Beam Experiments as a Means for the Generation of Elusive Sulfur-Containing Molecules

  • Detlev Sülzle
  • Thomas Drewello
  • Helmut Schwarz
Part of the NATO ASI Series book series (NSSA, volume 197)


Quite a few molecular species can only be generated in the gas phase because in solution or even in the solid state intermolecular interactions will make them unstable and lead to isomerization, polymerization or dissociation.1–3 The diluted gas phase which exists in a mass spectrometer is ideally suited for the study of isolated molecules. First of all, as the experiments are conducted in the absence of any counterions and solvents one does not have to account for any possible intermolecular effects. Secondly, the past ten years have witnessed an impressive development in mass spectrometric methodologies4–8 for the tailor-made generation and characterization of solitary ions with unusual structures and/or intriguing properties. Among the species studied are not only singly-charged ions, but also di- and polycations, which are produced from a high kinetic energy beam of mono-cations via charge-stripping mass spectrometry (CSMS),9–12 as well as unique neutrals.The latter can easily be generated and characterized by the promising technique of neutralization/reionization mass spectrome­try (NRMS).13–18 Without going into technical details, the two experiments consist of the fol­lowing steps:

CSMS: Monocations, m 1 + , formed in the ion source of a multi-sector mass spectrometer, are accelerated to several keV kinetic energy and mass-selected by means of a magnetic field B before colliding with a collision gas, preferably oxygen, in a collision cell located in the field-free region between B and the electric sector E. Charge-stripping peaks due to reaction (1) are obtained by scanning the electric sector voltage (E) around E/2, where E represents the voltage required to transmit stable m 1 + ions.


Collisional Activation Methane Sulfonic Acid Carbamic Acid Hydrogen Sulfite Charge Separation Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Wentrup, “Reactive Molecules: The Neutral Reactive Intermediate in Organic Chemistry”, Wiley, New York (1984).Google Scholar
  2. 2.
    W.W. Duley and D.A. Williams, “Interstellar Chemistry”, Academic Press, London (1984).Google Scholar
  3. 3.
    G. Winnewisser and E. Herbst, Top. Curr. Chem. 139: 119 (1987).CrossRefGoogle Scholar
  4. 4.
    M.T. Bowers (ed.), “Gas Phase Ion Chemistry”, Vol. 1–3, Academic Press, Orlando (1984).Google Scholar
  5. 5.
    F.W. McLafferty (ed.), “Tandem Mass Spectrometry”, Wiley, New York (1983).Google Scholar
  6. 6.
    J.H. Futrell (ed.), “Gaseous Ion Chemistry and Mass Spectrometry”, Wiley, New York (1986).Google Scholar
  7. 7.
    P. Ausloos and S.G. Lias (eds.), “Structure/Reactivity and Thermochemistry of Ions”, Reidel, Dordrecht (1987).Google Scholar
  8. 8.
    J.L. Holmes, Org. Mass Spectrom. 20: 169 (1985).CrossRefGoogle Scholar
  9. 9.
    R.G. Cooks, T. Ast, and J.H. Beynon, Int. J. Mass Spectrom. Ion Phys. 11: 490 (1973).CrossRefGoogle Scholar
  10. 10.
    T. Ast, Adv. Mass Spectrom. 8A: 555 (1980).Google Scholar
  11. 11.
    K. Levsen and H. Schwarz, Mass Spectrom. Rev. 2: 77 (1983).CrossRefGoogle Scholar
  12. 12.
    W. Koch, F. Maquin, D. Stahl, and H. Schwarz, Chimia 39: 376 (1985).Google Scholar
  13. 13.
    C. Wesdemiotis and F.W. McLafferty, Chem. Rev. 87: 485 (1987).CrossRefGoogle Scholar
  14. 14.
    J.K. Terlouw and H. Schwarz, Angew. Chem. Int. Ed. Engl. 26: 805 (1987).CrossRefGoogle Scholar
  15. 15.
    J.L. Holmes, Mass Spectrom. Rev. 8: 513 (1989).CrossRefGoogle Scholar
  16. 16.
    J.K. Terlouw, Adv. Mass Spectrom. 11: 984 (1989).Google Scholar
  17. 17.
    J.L. Holmes, Adv. Mass Spectrom. 11: 53 (1989).Google Scholar
  18. 18.
    H. Schwarz, Pure Appl. Chem. 61: 685 (1989).CrossRefGoogle Scholar
  19. 19.
    J.K. Terlouw, C.B. Lebrilla, and H. Schwarz, Angew. Chem. Int. Ed. Engl. 26: 354 (1987).CrossRefGoogle Scholar
  20. 20.
    K.J. van den Berg, C.B. Lebrilla, J.K. Terlouw, and H. Schwarz, Chimia 41: 122 (1987).Google Scholar
  21. 21.
    D. Sülzle, M. Verhoeven, J.K. Terlouw, and H. Schwarz, Angew. Chem. Int. Ed. Engl. 27: 1533 (1988).CrossRefGoogle Scholar
  22. 22.
    H. Egsgaard, L. Carlsen, H. Florencio, T. Drewello, and H. Schwarz, Chem. Phys. Lett. 148: 537 (1988).CrossRefGoogle Scholar
  23. 23.
    S. Nagase, S. Hashimoto, and H. Akimoto, J. Phys. Chem. 92: 641 (1988).CrossRefGoogle Scholar
  24. 24.
    D. Sülzle and H. Schwarz, Angew. Chem. Int. Ed. Engl. 27: 1337 (1988).CrossRefGoogle Scholar
  25. 25.
    G.P. Raine, H.F. Schaefer III, and R.C. Haddon, J. Am. Chem. Soc. 105: 194 (1983).CrossRefGoogle Scholar
  26. 26.
    D. Sülzle, J.K. Terlouw, and H. Schwarz, J. Am. Chem. Soc. in press.Google Scholar
  27. 27.
    D. Sülzle and H. Schwarz, Chem. Ber. 122: 1803 (1989).CrossRefGoogle Scholar
  28. 28.
    D. Sülzle and H. Schwarz, in preparation.Google Scholar
  29. 29.
    W. Koch and H. Schwarz in ref. 7, p. 413.Google Scholar
  30. 30.
    P.V.R. Schleyer, Am. Chem. Soc. Div. Pet. Chem. Prep. 28: 413 (1983).Google Scholar
  31. 31.
    P.V.R. Schleyer, Adv. Mass Spectrom. 10: 287 (1985).Google Scholar
  32. 32.
    T. Ast, Adv. Mass Spectrom. 10: 471 (1985).Google Scholar
  33. 33.
    L. Radom, P.M.W. Gill, M.W. Wong, and R.H. Nobes, Pure Appl. Chem. 60: 183 (1988).CrossRefGoogle Scholar
  34. 34.
    K. Lammertsma, Rev. Chem. Interm. 9: 141 (1988).CrossRefGoogle Scholar
  35. 35.
    K. Lammertsma, P.V.R. Schleyer, and H. Schwarz, Angew. Chem. Int. Ed. Engl. 28: 1321 (1989).CrossRefGoogle Scholar
  36. 35.
    M. Guilhaus, A.G. Brenton, J.H. Beynon, M. Rabrenovich, and P.V.R. Schleyer, J. Chem. Soc. Chem. Commun. 210 (1985).Google Scholar
  37. 37.
    T. Drewello, C.B. Lebrilla, H. Schwarz, L.J. de Koning, R.M. Fokkens, N.M.M. Nibbering, E. Anklam, and K.-D. Asmus, J. Chem. Soc. Chem. Comm. 1381 (1987).Google Scholar
  38. 38.
    A.J. Illies, P. Livant, and M.L. McKee, J. Am. Chem. Soc. 110: 7980 (1988).CrossRefGoogle Scholar
  39. 39.
    N.C. Baird, J. Chem. Ed. 54: 291 (1977).CrossRefGoogle Scholar
  40. 40.
    T. Clark, J. Am. Chem. Soc. 110: 1672 (1988).CrossRefGoogle Scholar
  41. 41.
    P.M.W. Gill and L. Radom, J. Am. Chem. Soc. 110: 4931 (1988).CrossRefGoogle Scholar
  42. 42.
    K.-D. Asmus, Ace. Chem. Res. 12: 436 (1979).CrossRefGoogle Scholar
  43. 43.
    J. Mönig, R. Goslich, and K.-D. Asmus, Ber. Bunsenges. Phys. Chem. 90: 115 (1986)Google Scholar
  44. 44.
    T. Drewello, C.B. Lebrilla, K.-D. Asmus, and H. Schwarz, Angew. Chem. Int. Ed. Engl. 28: 1275 (1989).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Detlev Sülzle
    • 1
  • Thomas Drewello
    • 1
  • Helmut Schwarz
    • 1
  1. 1.Institut für Organische ChemieTechnische Universität BerlinBerlin 12F.R. Germany

Personalised recommendations