Applications of Pulse Radiolysis for the Study of Short-Lived Sulphur Species

  • David A. Armstrong
Part of the NATO ASI Series book series (NSSA, volume 197)


The first successful observations of free radical intermediates by spectroscopic techniques were made by Norrish and Porter using flash photolysis. Pulse radiolysis is the radiation-chemical analogue of flash photolysis. In it free radicals are created by the deposition of energy from a transient beam of high energy (0.6–10 MeV) electrons. These lose energy to electrons in the molecular orbitals of the target material due to repulsive coulombic interactions. The discrete energy losses result in excitations or ionizations of the molecules.1 In water ionization dominates, with an average distance of about 100 nm between successive events. Secondary electrons produced in these ionizations have varying energies. They too cause ionization and excitation. Those of low energy (100 eV) deposit their energy within a relatively small volume, creating what is commonly called a spur with a number of ions, electrons, and free radicals in relatively close proximity. The distributions of radicals per spur (or of spur sizes) depends on the initial energy of the primary electrons and the medium irradiated. For 1 MeV electrons in water at 25 °C, about half the spurs contain only one ion pair, while for the others the number of reactive species varies up to about six.


Radical Cation Lipoic Acid Bond Dissociation Energy Flash Photolysis Pulse Radiolysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I.G. Draganic and Z.D. Draganic, The Radiation Chemistry of Water, Academic, Press, New York (1971).Google Scholar
  2. 2 a.
    Zhennan Wu, T.G. Back, R. Ahmad, R. Yamdagni, and D.A. Armstrong, J. Phys. Chem. 86: 4417 (1982).CrossRefGoogle Scholar
  3. 2 b.
    T.J. Burkey, J.A. Hawari, F.P. Lossing, J. Lusztyk, R. Sutcliffe, and D. Griller, J. Organic Chem. 50: 4966 (1985).CrossRefGoogle Scholar
  4. 2 c.
    G.H. Morine and R.R. Kuntz, Photochem. and Photobiol. 33: 1 (1981).CrossRefGoogle Scholar
  5. 3 a.
    H. Möckel, M. Bonifacic, and K.-D. Asmus, J. Phys. Chem. 78: 282 (1974).CrossRefGoogle Scholar
  6. 3 b.
    M. Bonifacic, K. Schäfer, H. Möckel, and K.-D. Asmus, J. Phys. Chem. 79: 1496 (1975).CrossRefGoogle Scholar
  7. 3 c.
    M. Bonifacic and K.-D. Asmus, J. Phys. Chem. 80: 2426 (1976).CrossRefGoogle Scholar
  8. 4.
    A.J. Elliot, R.J. McEachern, and D.A. Armstrong, J. Phys. Chem. 85: 68 (1981).CrossRefGoogle Scholar
  9. 5 a.
    M. Bonifacic, H. Möckel, D. Bahnemann, and K.-D. Asmus, J. Chem. Soc. Perkin Trans. I1 675 (1975).Google Scholar
  10. 5 b.
    K.-D. Asmus, Acc. Chem. Research 12: 436 (1979).CrossRefGoogle Scholar
  11. 5 c.
    M. Bonifacic, J. Weiss, S.A. Chaudhri, and K.-D. Asmus, J. Phys. Chem. 89: 3910 (1985).CrossRefGoogle Scholar
  12. 6.
    W. Karmann, A. Ganzow, G. Meissner, and A. Henglein, Int. J. Radiat. Phys. Chem. 1: 395 (1969).CrossRefGoogle Scholar
  13. 7 a.
    M.Z. Hoffman and E. Hayon, J. Am. Chem. Soc. 94: 7950 (1972).CrossRefGoogle Scholar
  14. 7 b.
    G.G. Jayson, D.A. Sterling, and A.J. Swallow, Int. J. Radial. Biol. 19: 143 (1971).CrossRefGoogle Scholar
  15. 7 c.
    J.W. Purdie, H.A. Gillis, and N.A. Klassen, Can. J. Chem. 51: 3132 (1973).CrossRefGoogle Scholar
  16. 8 a.
    J.E. Packer, in: “The Chemistry of the Thiol Group”, Part 2, S. Patai, ed., Wiley, London, Chapter 11 (1974).Google Scholar
  17. 8 b.
    C. von Sonntag and H.P. Schuchmann, in “Chem. Ethers, Crown Ethers, Hydroxyl Groups and Their Sulphur Analogues”, S. Patai, ed., Wiley, Chichester, England, Vol. 2 (1980).Google Scholar
  18. 9.
    M.S. Akhlaq, C. von Sonntag, Z. Naturforsch. C.: Biosci. 42: 134 (1987).Google Scholar
  19. 10.
    M. Bonifacic and K.-D. Asmus, J. Chem. Soc. Perkin Trans. II 1805 (1986).Google Scholar
  20. 11 a.
    P.S. Surdhar and D.A. Armstrong, J. Phys. Chem. 90: 5915 (1986).CrossRefGoogle Scholar
  21. 11 b.
    P.S. Surdhar and D.A. Armstrong, J. Phys. Chem. 91: 6532 (1986).CrossRefGoogle Scholar
  22. 11 c.
    P.S. Surdhar, S.P. Mezyk and D.A. Armstrong, J. Phys. Chem. 93: 3360 (1989).CrossRefGoogle Scholar
  23. 12.
    H.A. Schwarz and R.W. Dodson, J. Phys. Chem. 93: 409 (1989).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • David A. Armstrong
    • 1
  1. 1.Department of ChemistryUniversity of CalgaryCalgaryCanada

Personalised recommendations