Photocatalytic Formation of Sulfur-Centered Radicals by One-Electron Redox Processes on Semiconductor Surfaces

  • Detlef Bahnemann
Part of the NATO ASI Series book series (NSSA, volume 197)


Free radical reactions cannot only be initiated and conveniently studied by radiation- or photo-chemical methods, but it is also possible to generate reactive free radical intermediates upon band-gap illumination of semiconducting materials. Depending on the individual material properties it is possible, for example, in an aqueous solvent to form primary radicals such as hydroxyl and sulfhydrol radicals or hydrated electrons. It is the microscopic structure of the semiconductor/electrolyte interface which determines the fate of these radical species: they may either diffuse into the bulk of the solution and initiate subsequent redox reactions like in a homogeneous system, or they are strongly adsorbed to the surface resulting in specific paths of the consecutive processes at the interface.


Conduction Band Electron Transient Absorption Spectrum Normal Hydrogen Electrode Semiconductor Particle Metal Oxide Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.W. Atkins, “Physical Chemistry”, Oxford University Press, Oxford, U.K., p. 484 (1978).Google Scholar
  2. 2.
    H. Gerischer, Topics in Appl. Physics 31: 115 (1979).CrossRefGoogle Scholar
  3. 3.
    R. Memming, Topics in Current Chemistry143: 79 (1988).CrossRefGoogle Scholar
  4. 4.
    G. Rothenburger, J. Moser, M. Grätzel, N. Serpone, and D.K. Sharma, J. Am. Chem. Soc. 107: 8054 (1985).CrossRefGoogle Scholar
  5. 5.
    C. Kormann, D.W. Bahnemann, and M. R. Hoffmann, J. Phys. Chem. 92: 5196 (1988).CrossRefGoogle Scholar
  6. 6.
    D.W. Bahnemann, Ch.-H. Fischer, E. Janata, and A. Henglein, J. Chem. Soc., Faraday Trans. 1 83: 2559 (1987).Google Scholar
  7. 7.
    M. Gutiérrez and A. Henglein Ber. Bunsenges. Phys. Chem. 87:474 (1983).Google Scholar
  8. 8.
    A. Henglein Ber. Bunsenges. Phys. Chem. 86:301 (1982).Google Scholar
  9. 9.
    D. Bahnemann, A. Henglein, and L. Spanhel, Faraday Discuss. Chem. Soc. 78: 151 (1984).CrossRefGoogle Scholar
  10. 10.
    M. Haase, H. Weller, and A. Henglein, J. Phys. Chem. 92: 4706 (1988).CrossRefGoogle Scholar
  11. 11.
    Z. Alfassi, D. Bahnemann, and A. Henglein, J. Phys. Chem. 86: 4656 (1982).CrossRefGoogle Scholar
  12. 12.
    H. Weller, private communication (1988).Google Scholar
  13. 13.
    W.M. Latimer, “Oxidation Potentials”, 2nd Edition, Prentice-Hall, New York, p. 38 (1952).Google Scholar
  14. 14.
    G. Charlot, A. Collumeau, and M. Marchon, “Selected Constants, Oxidation-Reduction Potentials of Inorganic Substances in Aqueous Solution”, Butterworth Publ., London, (1971).Google Scholar
  15. 15.
    D. Meisel and P. Neta J. Am. Chem. Soc. 97: 5198 (1975).CrossRefGoogle Scholar
  16. 16.
    P. Wardman and E.D. Clarke J. Chem. Soc. Faraday Trans. 1 72:1377 (1976).Google Scholar
  17. 17.
    M. v. Stackelberg and W. Stracke, Z. f. Elektrochem. 53: 118 (1949).Google Scholar
  18. 18.
    S. Wawzonek and R.C. Duty J. Electrochem. Soc. 188:1135 (1961).CrossRefGoogle Scholar
  19. 19.
    J.C. Suatoni, R.E. Snyder, and R.O. Clark, Anal. Chem. 33: 1894 (1961).CrossRefGoogle Scholar
  20. 20.
    S. Steenken and P. Neta, J. Phys. Chem. 83: 1134 (1979).CrossRefGoogle Scholar
  21. 21.
    S. Steenken and P. Neta, J. Phys. Chem. 86: 3661 (1982).CrossRefGoogle Scholar
  22. 22.
    R.E. Huie and P. Neta, J. Phys. Chem. 89: 3918 (1985).CrossRefGoogle Scholar
  23. 23.
    A.J. Bard and H. Lund, “Encyclopedia of Electrochemistry of the Elements”, Vol. XII, Marcel-Dekker, New York (1978).Google Scholar
  24. 24.
    W. Stumm and J.J. Morgan, “Aquatic Chemistry”, J. Wiley & Sons, New York, pp. 599–640 (1981).Google Scholar
  25. 25.
    D.W. Bahnemann, C. Kormann, and M.R. Hoffmann J. Phys. Chem. 91:3789 (1987).CrossRefGoogle Scholar
  26. 26.
    B.C. Faust, M.R. Hoffmann, and D.W. Bahnemann J. Phys. Chem. 93: 6371 (1989).CrossRefGoogle Scholar
  27. 27.
    C. Kormann, D.W. Bahnemann, and M.R. Hoffmann J. Phys. Chem.submitted.Google Scholar
  28. 28.
    A. Henglein Topics in Current Chemistry 143:113 (1988).CrossRefGoogle Scholar
  29. 29.
    D. Bahnemann, A. Henglein, J. Lilie, and L. Spanhel, J. Phys. Chem. 88: 709 (1984).CrossRefGoogle Scholar
  30. 30.
    D. Duonghong, J. Ramsden, and M. Grätzel, J. Am. Chem. Soc. 104: 2977 (1982).Google Scholar
  31. 31.
    J. Moser and M. Grätzel J. Am. Chem Soc. 105: 6547 (1983).CrossRefGoogle Scholar
  32. 32.
    M. A. West, Creat. Detect. Excited State 4: 217 (1976).Google Scholar
  33. 33.
    G. Beck Int. J. Radiat. Phys. Chem. 1:361(1969).Google Scholar
  34. 34.
    E. Janata, Radiat. Phys. Chem. 16: 37 (1980).Google Scholar
  35. 35.
    F. Wilkinson, C.J. Willsher, S. Uhl, W. Honnen, and D. Oelkrug, J. Photochem. 33: 273 (1986)CrossRefGoogle Scholar
  36. 36.
    A.P. Hong, D.W. Bahnemann, and M.R. Hoffmann, J. Phys. Chem. 91: 6245 (1987).CrossRefGoogle Scholar
  37. 37.
    H.Z. Backström, Phys. Chem. 25B: 122 (1934).Google Scholar
  38. 38.
    E. Hayon, E. Treinin, and J. Wilf, J. Am. Chem. Soc. 94: 47 (1972).Google Scholar
  39. 39.
    R. Huie and P. Neta, J. Phys. Chem. 88: 5665 (1984).CrossRefGoogle Scholar
  40. 40.
    R. Huie and P. Neta, EHP, Environ. Health Perspect. 64: 209 (1985).CrossRefGoogle Scholar
  41. 41.
    B.H.J. Bielski, D.E. Cabelli, R.L. Arudi, and A.B. Ross, J. Phys. Chem. Ref. Data 14: 1041 (1985).CrossRefGoogle Scholar
  42. 42.
    D.W. Bahnemann and M.R Hoffmann, Proc. Electrochem. Soc.88–14: 74 (1988).Google Scholar
  43. 43.
    A.P. Hong, D.W. Bahnemann, and M.R. Hoffmann J. Phys. Chem. 91: 2109 (1987).CrossRefGoogle Scholar
  44. 44.
    W. Hoyer, Dissertation TU Berlin, FRG D83, (1987).Google Scholar
  45. 45.
    D.F. O11is, Environ. Sci. Technol. 19: 480 (1985).CrossRefGoogle Scholar
  46. 46.
    R.W. Matthews, Wat. Res. 2: 569 (1986).Google Scholar
  47. 47.
    E. Pelizetti, M. Borgarello, C. Minero, E. Pramauro, E. Borgarello, and N. Serpone, Chemosphere 17: 499 (1988).CrossRefGoogle Scholar
  48. 48.
    C. Kormann, D.W. Bahnemann, and M.R. Hoffmann, J. Photochem. Photobiol., A: Chemistry 48: 161 (1989).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Detlef Bahnemann
    • 1
  1. 1.Institut für Solarenergieforschung GmbHHannover 1F. R. Germany

Personalised recommendations