Neuropeptide mRNA Expression in Human Basal Ganglia

  • G. Mengod
  • E. Ruberte
  • A. Probst
  • J. M. Palacios
Part of the Advances in Behavioral Biology book series (ABBI, volume 39)


We have examined the distribution in human basal ganglia of cells expressing mRNAs for several neuropeptides in control and diseased postmortem material by in situ hybridization histochemistry using 32P-labelled oligonucleotides as hybridization probes. In control cases, enkephalin mRNA showed a patchy-like distribution. Cells containing somatostatin mRNA and neuropeptide Y mRNA were scattered throughout the caudate and putamen in a very similar pattern. Cholecystokinin mRNA was not found in the striatum. In Parkinson’s disease, our preliminary results showed a decrease in the hybridization signal with the enkephalin probe. In contrast, somatostatin mRNA levels and neuropeptide Y levels did not exhibit significant changes. In Huntington’s chorea, we have observed a marked decrease in the levels of enkephalin mRNA in both caudate and putamen but not in the nucleus accumbens. In contrast, no alteration of the hybridization signal was observed for both somatostatin and neuropeptide Y mRNAs. These results show that in situ hybridization histochemistry is very useful for the study of the molecular anatomy of the human basal ganglia and their pathology.


Basal Ganglion Nucleus Accumbens Hybridization Signal Postmortem Delay Hybridization Histochemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agid, Y., Javoy-Agid, F., 1985, Peptides and Parkinson’s disease. Trends Neurosci., 1: 30.CrossRefGoogle Scholar
  2. Beal, M.F., Martin, J.B., 1986, Neuropeptides and neurological disease. Ann Neurol., 20: 547.PubMedCrossRefGoogle Scholar
  3. Bird, E.D., Iversen, L.L., 1982, Human brain postmortem studies of neurotransmitter and related markers. In: Handbook of Neurochemistry, Lajtha A., ed., vol 2. Plenum Press, London, New York., pp. 225.Google Scholar
  4. Björklund, A., Hökfelt, T., (eds), 1983, In: Handbook of Chemical Neuroanatomy, vol 1. Elsevier Press. Amsterdam.Google Scholar
  5. Chesselet, M.F., Graybiel, A.M., 1986, Striatal neurons expressing somatostatin-like immunoreactivity: evidence for a peptidergic iriterneuronal system in the cat. Neurosci. 17: 547.CrossRefGoogle Scholar
  6. Emson, P.C., Rossor, M.N., Tohyama, M., (eds), 1986, Neuropeptides and neurodegenerative diseases. Progress in Brain Research, vol 66. Elsevier Science Publishers B.V. AmsterdamGoogle Scholar
  7. Gerfen, C.R., Herkerham, M., Thibault, J., 1987a, The neostriatal mosaic: II.Patch and matrix directed mesostriatal dopaminergic and non-dopaminergic systems. J. Neurosci., 7: 3915.Google Scholar
  8. Gerfen, C.R., Baimbridge, K.G., Thibault, J., 1987b, The neostriatal mosaic: III. Biochemical and developmental dissociation of patch-matrix mesostriatal systems. J. Neurosci., 7: 3935.Google Scholar
  9. Graveland, G.A., Williams, R.S., DiFialia, M.. 1985, A Golgi study of the human neostriatum: Neurons and afferent fibers. J. Comp. Neurol.. 234: 317.PubMedCrossRefGoogle Scholar
  10. Graybiel, A.M., Ragsdale, Jr. C.W., 1984, Biochemical anatomy of the striatum. In: Chemical Neuroanatomy. P.C. Emson, ed., Raven Press, New York, pp. 427–504Google Scholar
  11. Hornykiewicz, 0., 1972, Dopamine and its physiological significance in brain function. In: The Structure and Function of Neurons Systems. vol 6. G.M. Bournes ed., Academic Press, New York, pp. 367–415Google Scholar
  12. Kerkerian, L., Bosler, O., Pelletier, G., Nieoullon, A., 1986, Striatal neuropeptide Y neurons are under the influence of the nigrostriatal dopaminergic pathway: immunohistochemical evidence. Neurosci. Lett., 66: 106.PubMedCrossRefGoogle Scholar
  13. Kowall, N.W., Perrante, R.S., Martin, J.B., 1987, Patterns of cell loss in Huntington’s disease. Trends Neurosci., 10: 24.CrossRefGoogle Scholar
  14. Mengod, G., and Palacios, J.M.,(1990) Molecular neuropathology: The study of transmitter and receptor expression in human postmortem materials by in situ hybridization and receptor autoradiography. In: Neuropsychopharmacology, edited by W.E. Bunney jr., H. Hippius, G. Laakmann and M. Schmauss. Springer Verlag, Berlin. In press.Google Scholar
  15. Mengod, G., Charli, J.-L., and Palacios, J.M., (1990) The use of in situ hybridization histochemistry for the study of neuropeptide gene expression in the human brain. Cel. Mol. Neurobiol.. In press.Google Scholar
  16. Mengod, G., Martinez-Mir, M.I., Vilaró, M.T., and Palacios, J.M. 1989 Localization of the mRNA for dopamine D receptor in the rat brain by in situ hybridization histochemistry. Proc. Natl. Acad. Sci., USA., 86: 8560.PubMedCrossRefGoogle Scholar
  17. Minth, C.D., Bloom, S.R., Polak, J.M., and Dixon, J.E., 1984, Cloning, characterization, and DNA sequence of a human cDNA encoding neuropeptide tyrosine. Proc. Natl. Acad. Sci., USA, 81: 4577.PubMedCrossRefGoogle Scholar
  18. Noda, M., Teranishi, Y., Takahashi, H., Toyosato, M., Notake, M., Nakanishi, S., and Numa, S., 1982, Isolation and structural organization of the human preproenkephalin gene. Nature 297: 431.PubMedCrossRefGoogle Scholar
  19. Palacios, J.M., Probst, A., and Cortés, R., 1986, Mapping receptors in the human brain. Trends Neurosci., 9: 284.CrossRefGoogle Scholar
  20. Parent, A., 1987, In: Comparative Neurobiology of the basal ganglia. J. Wiley and Sons. New York.Google Scholar
  21. Pickel, V.M., Sumal, K.K., Beckley, S.C., Miller, R.J., and Reis, D.J. 1980, Immunocytochemical localization of enkephalin in the neostriatum of rat brain: a light and electron microscopic study. J. Comp. Neurol. 189: 721.PubMedCrossRefGoogle Scholar
  22. Rossor, M.N., 1982, Dementia (Neurotransmitters and CNS Disease), Lancet, 11: 1200.Google Scholar
  23. Shen, L-P., Pictet, R.L., and Rutter, W.J., 1982, Human somatostatin I: sequence of the cDNA. Proc. Natl. Acad. Sci., USA, 79: 4575.PubMedCrossRefGoogle Scholar
  24. Savasta, M., Ruberte, E., Palacios, J.M., and Mengod, G., 1989, The colocalization of cholecystokinin and tyrosine hydroxylase mRNAs in mesencephalic dopaminergic neurons in the rat brain examined by in situ hybridization. Neurosci., 29: 363.CrossRefGoogle Scholar
  25. Takahashi, Y., Kato, K., Hayashizaki, Y., Wakahayashi, T., Ohtsuka, E., Matsuki, S., Ikehara, M., and Matsubara, K., 1985, Molecular cloning of the human cholecystokinin gene by use of a synthetic probe containing deoxyi_nosine. Proc_ Natl. Acad. Sci., USA, 82: 1931.PubMedCrossRefGoogle Scholar
  26. Valentino, K.L., Eberwine, J.H., and Barchas, J.D. (eds) 1987, In: In situ hybridization. Applications to neurobiology. Oxford University Press. New York, OxfordGoogle Scholar
  27. Young, III W.S., Bonner, T.I., Brann, M.R., 1986, Mesencephalic dopamine neurons regulate the expresion of neuropeptide mRNAs in the rat forebrain. Proc. Natl. Acad. Sci. USA, 83: 9827.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • G. Mengod
    • 1
  • E. Ruberte
    • 1
    • 2
  • A. Probst
    • 3
  • J. M. Palacios
    • 1
  1. 1.Preclinical ResearchSandoz Pharma AGBaselSwitzerland
  2. 2.Faculté MédecineLab. Génétique Moléculaire CNRSStrasbourgFrance
  3. 3.Institut für Pathologie, Abteilung NeuropathologieUniversität BaselBaselSwitzerland

Personalised recommendations