Effects of Transient Global Ischemia on the Basal Ganglia of Rat

  • R. Schmidt-Kastner
  • W. Paschen
  • K.-A. Hossmann
Part of the Advances in Behavioral Biology book series (ABBI, volume 39)


The present studies focussed upon the effect of transient global brain ischemia on basal ganglia of rat. A modified four-vessel occlusion (4VO) model was used to induce forebrain ischemia. Regional cerebral blood flow was severely depressed in the striatum during 4VO. Biochemical measurements revealed a massive depletion of energy-rich metabolites in the striatum during ischemia which was followed by a transient recovery of energy metabolism. Neuropathological studies demonstrated early and massive lesions in the striatum. Damage increased from ventral to dorso-lateral areas of the striatum which may be related both to variations in the microcirculatory disturbances and to differences in intrinsic neuronal organization. Immunohistochemical studies showed a depression of staining for astrocytes and formation of vasogenic edema in the dorso-lateral striatum.


Glial Fibrillary Acidic Protein Globus Pallidus Regional Cerebral Blood Flow Lateral Area Large Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Siesjö, B.K., 1981, Cell damage in the brain: a speculative synthesis, J. Cereb. Blood Flow Metabol. 1: 155–185.CrossRefGoogle Scholar
  2. 2.
    Hossmann, K.-A., 1982, Treatment of experimental cerebral ischemia, J. Cereb. Blood Flow Metabol. 2: 275–297.CrossRefGoogle Scholar
  3. 3.
    Plum, F.,1983, What causes infarction in ischemic brain?: The Robert Wartenberg Lecture, Neurology 33: 222–233.Google Scholar
  4. 4.
    Kogure, K., Hossmann, K.-A., Siesjö, B.K., Welsh, F.A., 1985, Molecular mechanisms of ischemic brain damage, Prog. Brain Res. 63.Google Scholar
  5. 5.
    Pulsinelli, W.A., Brierley, J.B., Plum, F. 1982, Temporal profile of neuronal damage in a model of transient forebrain ischemia, Ann. Neurol. 11: 491–498.PubMedCrossRefGoogle Scholar
  6. 6.
    Ginsberg, M.D., Graham, D.I., Busto, P., 1985, Regional glucose utilization and blood flow following graded forebrain ischemia in the rat: correlation with neuropathology, Ann.Neurol. 18: 470–481.PubMedCrossRefGoogle Scholar
  7. 7.
    Smith, M.-L., Kalimo, H., Warner, D.S., Siesjö, B.K., 1988, Morphological lesions in the brain preceding the development of postischemic seizures, Acta Neuropathol. 76: 253–264.PubMedCrossRefGoogle Scholar
  8. 8.
    Petito, C.K., Pulsinelli, W.A., Jacobson, G., Plum, F., 1982, Edema and vascular permeability in cerebral ischemia: comparison between ischemic neuronal damage and infarction, J. Neuropathol. Exp. Neurol. 41: 423 - A36.PubMedCrossRefGoogle Scholar
  9. 9.
    Kirino, T, 1982, Delayed neuronal death in the gerbil hippocampus following ischemia, Brain Res. 239: 57–69.PubMedCrossRefGoogle Scholar
  10. 10.
    Schmidt-Kastner, R., Hossmann, K.-A., 1988, The distribution of ischemic neuronal damage in the dorsal hippocampus of rat, Acta Neuropathol. 76: 411–421.PubMedCrossRefGoogle Scholar
  11. 11.
    Schmidt-Kastner, R., Paschen, W., Grosse Ophoff, B., Hossmann, K.-A., 1989, A modified four-vessel occlusion model for inducing incomplete forebrain ischemia in rats, Stroke 20: 938–946.PubMedCrossRefGoogle Scholar
  12. 12.
    Pulsinelli, W.A., Brierley, J.B., 1979, A new model of bilateral hemispheric ischemia in the unanesthetized rat, Stroke 10: 267–272.PubMedCrossRefGoogle Scholar
  13. 13.
    Pellegrino, L.J., Pellegrino, A.S., Cushman, A.J., 1979, A stereotaxic atlas of the rat brain, 2nd ed., Plenum Press, New York London.Google Scholar
  14. 14.
    Hedreen, J.C., Bacon, S.J., Price, D.L., 1985, A modified histochemical technique to visualize acetylcholinesterase-containing axons, J. Histochem. Cytochem. 33: 134–140.PubMedCrossRefGoogle Scholar
  15. 15.
    Paschen, W., Djuricic, B., Mies, G., Schmidt-Kastner, R., Linn, F., 1987, Lactate and pH in the brain: Association and dissociation in different pathophysiological states, J. Neurochem. 48: 154–159.PubMedCrossRefGoogle Scholar
  16. 16.
    Paschen, W., Schmidt-Kastner, R., Djuricic, B., Meese, C., Linn, F., Hossmann, K.-A., 1987, Polyamine changes in reversible cerebral ischemia, J. Neurochem. 49: 35–37.PubMedCrossRefGoogle Scholar
  17. 17.
    Rieke, G.K., Bowers, D.E., Penn, P., 1981, Vascular supply pattern to rat caudatoputamen and globus pallidus: scanning electron-microscopic study of vascular endocasts of stroke-prone vessels, Stroke 12: 840–847.PubMedCrossRefGoogle Scholar
  18. 18.
    Pulsinelli, W.A., Levy, D.E., Duffy, T.E., 1982, Regional cerebral blood flow and glucose metabolism following transient forebrain ischemia, Ann. Neurol. 11: 499–509.PubMedCrossRefGoogle Scholar
  19. 19.
    Globus, M.Y.-T., Ginsberg, M.D., Harik, S.I., Busto, R., Dietrich, W.D., 1987, Role of dopamine in ischemic striatal injury. Metabolic evidence, Neurology 37: 1712–1719.PubMedCrossRefGoogle Scholar
  20. 20.
    Gerfen, C.R., Herkenham, M., Thibault, J., 1987, The neostriatal mosaic: II. Patch-and matrix directed mesostriatal dopaminergic and non-dopaminergic systems, J.Neurosci. 7: 3915–3934.PubMedGoogle Scholar
  21. 21.
    Freund, T.F., Buszaki, G., Leon, A., Baimbridge, K.G., Somogyi, P., 1990, Relationship between neuronal vulnerability and calcium binding protein immunoreactivity in ischemia, submitted.Google Scholar
  22. 22.
    Rea, M.A., Simon, J.R., 1981, Regional distribution of cholinergic parameters within the rat striatum, Brain Res. 219: 317–326.PubMedCrossRefGoogle Scholar
  23. 23.
    Beal, M.F, Martin, J.B, 1985, Topographical dopamine and serotonin distribution and turnover in rat striatum, Brain Res. 358: 10–15.PubMedCrossRefGoogle Scholar
  24. 24.
    Joyce, J.N., Loeschen, S.K., Marshall, J.F., 1985, Dopamine D-2 receptors in rat caudate-putamen: the lateral to medial gradient does not correspond to dopaminergic innervation, Brain Res. 338: 209–218.PubMedCrossRefGoogle Scholar
  25. 25.
    Globus, M.Y.-T., Ginsberg, M.D., Dietrich, W.D., Busto, R., Scheinberg, P., 1987, Substantia nigra lesion protects against ischemic damage in the striatum. Neurosci. Lett. 80: 251–256.PubMedCrossRefGoogle Scholar
  26. 26.
    Globus, M.Y.-T., Busto, R., Dietrich, W.D., Martinez, E., Valdes, I., Ginsberg, M.D., 1988, Effect of ischemia on the in vivo release of striatal dopamine, glutamate, and gamma-aminobutyric acid studied by intracerebral microdialysis, J. Neurochem. 51: 1455–1464.PubMedCrossRefGoogle Scholar
  27. 27.
    Francis, A., Pulsinelli, W., 1982, The response of GABAergic and cholinergic neurons to transient cerebral ischemia, Brain Res. 243: 271–278.PubMedCrossRefGoogle Scholar
  28. 28.
    Lynch, G.S., Lucas, P.A., Deadwyler, S.A., 1972, The demonstration of acetylcholinesterase containing neurons within the caudate nucleus of the rat, Brain Res. 45: 617–621.PubMedCrossRefGoogle Scholar
  29. 29.
    Johnston, M.V., Hudson, C., 1987, Effects of postnatal hypoxia-ischemia on cholinergic neurons in the developing rat forebrain: choline acetyltransferase immunocytochemistry, Dev. Brain Res. 34: 41–50.CrossRefGoogle Scholar
  30. 30.
    Chang, H.T., Wilson, C.J., Kitai, S.T., 1982, A Golgi study of rat neostriatal neurons: light microscopic analysis, J.Comp.Neurol. 208: 107–126.PubMedCrossRefGoogle Scholar
  31. 31.
    Ferrante, R.J., Kowall, N.W., Beal, M.F., Richardson, E.P., Bird, E.D., Martin, J.B., 1985, Selective sparing of a class of striatal neurons in Huntington’s disease, Science 230: 561–563.PubMedCrossRefGoogle Scholar
  32. 32.
    Beal, M.F., Kowall, N.W., Swartz, K.J., Ferrante, R.J., Martin, J.B., 1989, Differential sparing of somatostatin-neuropeptide Y and cholinergic neurons following striatal excitotoxin lesions, Synapse 3: 38–47.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • R. Schmidt-Kastner
    • 1
  • W. Paschen
    • 1
  • K.-A. Hossmann
    • 1
  1. 1.Dep. Experimental NeurologyMax-Planck-Institut für neurologische ForschungKöln 91FR Germany

Personalised recommendations