Skip to main content

Neurophysiological Development of Fetal Neostriatal Neurons Transplanted into Adult Neostriatum

  • Chapter
The Basal Ganglia III

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 39))

  • 161 Accesses

Abstract

Behavioral studies of rats with excitotoxic neostriatal lesions have demonstrated functional recovery of locomotor activity, motor symmetry, skilled motor tasks and performance in maze learning tasks after grafting of fetal neostriatal tissue (Dunnett et al, 1988; Deckel et al, 1983; Isacson et al, 1986). Histological analysis of the grafted neostriatal tissue suggests that these effects are mediated by the survival and growth of neurons which for the most part have been classified as the medium—sized spiny cell of the neostriatum (McAllister et al, 1985; Clarke et al, 1988, DiFiglia et al, 1988). It has been further proposed that the grafted neurons function via a reinstatement of the neurocircuitry normally found in the neostriatum (Dunnett et al, 1988; for review see Norman et al, 1988). A number of techniques have been used to show that nigral, cortical, thalamic and raphe afferents grow into the grafted neostriatal tissue (Clarke et al, 1988; Wictorin et al, 1989; Pritzel et al, 1986; Wilson et al, 1987). Conversely, grafted neostriatal tissue has been shown to reinstate gamma amino butyric acid (GABA) release in the globus pallidus and substantia nigra in lesioned animals (Sirinathsinghji et al, 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ben-Ari, Y. Cherubini, E., Corradetti, R. and Gaiarsa, J.L., 1989, Giant synaptic potentials in immature rat CA3 hippocampal neurones. J. Physiol ., 416: 303–325.

    PubMed  CAS  Google Scholar 

  • Buzsaki, G., Bayardo, F., Miles, R., Wong, R.K.S. and Gage, F.H., 1989, The grafted hippocampus: An epileptic focus.Exp. Neurol., 105: 10–22.

    Google Scholar 

  • Chang, H.T., Wilson, C.J. and Kítai, S.T., 1982, A golgi study of rat neostriatal neurons: Light microscopic analysis.J. Comp. Neurol., 208: 107–126.

    Google Scholar 

  • Chronister, R.B., Farnell, K.E., Marco, L.A. and White, L.E., Jr., 1976, The rodent neostriatum: A golgi analysis.Brain Res., 108: 37–46.

    Google Scholar 

  • Clarke, D.J., Dunnett, S.B., Isacson, 0., Sirinathsinghji, D.J.S. and Bjorklund, A., 1988, Striatal grafts in rats with unilateral neostriatal lesions - Ultrastructural evidence of afferent synaptic inputs from the host nígrostriatal pathway. Neurosci., 24: 791–801.

    Article  CAS  Google Scholar 

  • Deckel, A.W., Robinson, R.G., Coyle, J.T. and Sanberg, P.R., 1983, Reversal of long-term locomotor abnormalities in the kaínic acid model of Huntington’s disease by day fetal 18 striatal implants. Eur. J. Pharmac., 93: 287–288.

    Google Scholar 

  • DiFiglia, M., Schiff, L. and Deckel, A.W., 1988, Neuronal organization of fetal striatal grafts in kainate-and sham-lesioned rat caudate nucleus: Light and electron-microscopic observations. J. Neurosci., 8: 1112–1130.

    Google Scholar 

  • Dunnett, S.B., Isacson, 0., Sirinathsinghji, D.J.S., Clarke, D.J. and Bjorklund, A., 1988, Striatal grafts in rats with unilateral neostriatal lesions - III. Recovery from dopamine dependent motor asymmetry and deficits in skilled paw reaching. Neurosci., 24: 813–820.

    Google Scholar 

  • Freund, T.F., and Buzsaki, G., 1988, Alterations in excitatory and GABAergic inhibitory connections in hippocampal transplants. Neurosci., 27: 373–385.

    Article  CAS  Google Scholar 

  • Isacson, 0., Dunnett, S.B., and Bjorklund. A., 1986, Behavioral recovery in an animal model of Huntington’s disease. Proc. Natl. Acad. Sci. ( USA ), 83: 2728–2732.

    Article  PubMed  CAS  Google Scholar 

  • Kita, T., Kita, H., and Kitai, S.T., 1984, Passive electrical membrane properties of rat neostriatal neurons in an in vitro slice preparation. Brain Res., 300: 129–139.

    Article  PubMed  CAS  Google Scholar 

  • McAllister, J.P., Walker, P.D., Zemanick, M.C., Weber, A.B., Kaplan, L. and Reynolds, M.A., 1985, Morphology of embryonic neostriatal cell suspensions transplanted into adult neostriatum. Dev. Brain Res., 23: 282–286.

    Article  Google Scholar 

  • Misgeld, U., Dost, H.U. and Frotscher, M., 1986, Late development of intrinsic excitation in rat neostriatum: an in vitro study. Dev. Brain Res. 27: 59–67.

    Article  Google Scholar 

  • McCormick, D.A., and Prince, D.A., 1987, Postnatal development of electrophysiological properties of rat cerebral cortical pyramidal neurones. J. Physiol., 393: 743–762.

    PubMed  CAS  Google Scholar 

  • Mueller, A.L., Traub, J.S., and Schwartzkroin, P.A., 1984, Development of hyperpolarizing inhibitory postsynaptic potentials and hyperpolarizing response to r-aminobutyric acid in rabbit hippocampus studied in vitro. J. Neurosci., 4: 860–867.

    PubMed  CAS  Google Scholar 

  • Norman, A.B., Lehman, M.N. and Sanberg, P.R., 1988, Functional effects of fetal striatal transplants. Brain Res. Bull. 22: 163–172.

    Google Scholar 

  • Pritzel, M., Isacson, 0., Brundin, P., Wiklund L. and Bjorklund, A., 1986, Afferent and efferent connections of striatal grafts implanted into the ibotenic acid lesioned neostriatum. X Expl.Brain Res., 65: 112–126.

    Google Scholar 

  • Schmidt, R.H., Bjorklund, A., and Stenevi, U., 1981, Intracerebral grafting of dissociated tissue suspensions: A new approach for neural transplantation to deep brain sites. Brain Res., 218: 347–356.

    Article  PubMed  CAS  Google Scholar 

  • Sirinathsinghji, D.J.S., Dunnett, S.B., Isacson, O., Clarke, D.J., Kendrick,K. and Bjorklund, A., 1988, Striatal grafts in rats with unilateral neostriatal lesions - II. In vivo monitoring of GABA release in globus pallidus and substantia nigra. Neurosci., 24: 803–811.

    Google Scholar 

  • Schwartzkroin, P.A. and Altschuler, R.S., 1977, Development of kitten hippocampal neurons. Brain Res., 134: 429–444.

    Article  PubMed  CAS  Google Scholar 

  • Tauck, D.L. and Nadler, J.V., 1985, Evidence for functional mossy fiber sprouting in hippocampal formation of kaínic acid-treated rats. J. Neurosci., 5: 1016–1022.

    PubMed  CAS  Google Scholar 

  • Walker, P.D., Chovanes, G. and McAllister, J.P., 1987, Identification of acetylcholine-reactive neurons and neuropil in neostriatal transplant. J. Comp. Neurol., 259: 1–12.

    Google Scholar 

  • Walsh, J.P., Zhou, F.C., Hull, C.D., Fisher, R.S., Levine, M.S. and Buchwald, N.A., 1988, Physiological and morphological characterization of striatal neurons transplanted into the striatum of adult rats, Synapse, 2: 37–44.

    Article  PubMed  CAS  Google Scholar 

  • Wictorin, K., Clark, D.J., Bolam, J.P. and Bjorklund, A., 1989a, Host corticostriatal fibers establish synaptic connections with grafted striatal neurons in the ibotenic acid lesioned striatum. Eur. J. Neurosci., 1: 189–195.

    Article  PubMed  Google Scholar 

  • Wictorin, K., Ouimet, C.C. and Bjorklund, A., 1989b, Intrinsic organization and connectivity of intrastriatal striatal transplants in rats as revealed by DARPP-32 immunohistochemistry: Specificity of connections with the lesioned host brain. Eur. J. Neurosci., 1: 690–701.

    Article  PubMed  Google Scholar 

  • Wictorin, K., Isacson, 0., Fisher, W., Nothias, F., Peschanske, M., and Bjorklund, A., 1988, Connectivity of striatal grafts implanted into the ibotenic acid-lesioned striatum - I. Subcortical afferents. Neurosci., 27: 547–562.

    Google Scholar 

  • Wilson, C.J., Emson, P. and Feler, C., 1987, Electrophysiological evidence for the formation of a corticostriatal pathway in neostriatal tissue grafts. Soc. Neurosci. Abst., 13: 11.

    Google Scholar 

  • Wilson, C.J., 1984, Passive cable properties of dendritic spines and spiny neurons. J. Neurosci., 4: 281–297.

    PubMed  CAS  Google Scholar 

  • Wilson, C.J., 1988, Cellular mechanisms controlling the strength of synapses. J. Electron Microsc., 10: 293–313.

    Article  CAS  Google Scholar 

  • Zhou, F.C., Buchwald, N.A., Hull, C.D., and Towle, A., 1989, Neuronal and glial elements of fetal neostriatal grafts in the adult neostriatum. Neurosci., 30: 19–31.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Walsh, J.P., Hull, C.D., Cepeda, C., Levine, M.S., Buchwald, N.A. (1991). Neurophysiological Development of Fetal Neostriatal Neurons Transplanted into Adult Neostriatum. In: Bernardi, G., Carpenter, M.B., Di Chiara, G., Morelli, M., Stanzione, P. (eds) The Basal Ganglia III. Advances in Behavioral Biology, vol 39. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5871-8_59

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5871-8_59

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5873-2

  • Online ISBN: 978-1-4684-5871-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics