Advertisement

Neurophysiological Development of Fetal Neostriatal Neurons Transplanted into Adult Neostriatum

  • John P. Walsh
  • Chester D. Hull
  • Carlos Cepeda
  • Michael S. Levine
  • Nathaniel A. Buchwald
Part of the Advances in Behavioral Biology book series (ABBI, volume 39)

Abstract

Behavioral studies of rats with excitotoxic neostriatal lesions have demonstrated functional recovery of locomotor activity, motor symmetry, skilled motor tasks and performance in maze learning tasks after grafting of fetal neostriatal tissue (Dunnett et al, 1988; Deckel et al, 1983; Isacson et al, 1986). Histological analysis of the grafted neostriatal tissue suggests that these effects are mediated by the survival and growth of neurons which for the most part have been classified as the medium—sized spiny cell of the neostriatum (McAllister et al, 1985; Clarke et al, 1988, DiFiglia et al, 1988). It has been further proposed that the grafted neurons function via a reinstatement of the neurocircuitry normally found in the neostriatum (Dunnett et al, 1988; for review see Norman et al, 1988). A number of techniques have been used to show that nigral, cortical, thalamic and raphe afferents grow into the grafted neostriatal tissue (Clarke et al, 1988; Wictorin et al, 1989; Pritzel et al, 1986; Wilson et al, 1987). Conversely, grafted neostriatal tissue has been shown to reinstate gamma amino butyric acid (GABA) release in the globus pallidus and substantia nigra in lesioned animals (Sirinathsinghji et al, 1988).

Keywords

Gamma Amino Butyric Acid Lucifer Yellow Synaptic Response Synaptic Potential Ibotenic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ben-Ari, Y. Cherubini, E., Corradetti, R. and Gaiarsa, J.L., 1989, Giant synaptic potentials in immature rat CA3 hippocampal neurones. J. Physiol ., 416: 303–325.PubMedGoogle Scholar
  2. Buzsaki, G., Bayardo, F., Miles, R., Wong, R.K.S. and Gage, F.H., 1989, The grafted hippocampus: An epileptic focus.Exp. Neurol., 105: 10–22.Google Scholar
  3. Chang, H.T., Wilson, C.J. and Kítai, S.T., 1982, A golgi study of rat neostriatal neurons: Light microscopic analysis.J. Comp. Neurol., 208: 107–126.Google Scholar
  4. Chronister, R.B., Farnell, K.E., Marco, L.A. and White, L.E., Jr., 1976, The rodent neostriatum: A golgi analysis.Brain Res., 108: 37–46.Google Scholar
  5. Clarke, D.J., Dunnett, S.B., Isacson, 0., Sirinathsinghji, D.J.S. and Bjorklund, A., 1988, Striatal grafts in rats with unilateral neostriatal lesions - Ultrastructural evidence of afferent synaptic inputs from the host nígrostriatal pathway. Neurosci., 24: 791–801.CrossRefGoogle Scholar
  6. Deckel, A.W., Robinson, R.G., Coyle, J.T. and Sanberg, P.R., 1983, Reversal of long-term locomotor abnormalities in the kaínic acid model of Huntington’s disease by day fetal 18 striatal implants. Eur. J. Pharmac., 93: 287–288.Google Scholar
  7. DiFiglia, M., Schiff, L. and Deckel, A.W., 1988, Neuronal organization of fetal striatal grafts in kainate-and sham-lesioned rat caudate nucleus: Light and electron-microscopic observations. J. Neurosci., 8: 1112–1130.Google Scholar
  8. Dunnett, S.B., Isacson, 0., Sirinathsinghji, D.J.S., Clarke, D.J. and Bjorklund, A., 1988, Striatal grafts in rats with unilateral neostriatal lesions - III. Recovery from dopamine dependent motor asymmetry and deficits in skilled paw reaching. Neurosci., 24: 813–820.Google Scholar
  9. Freund, T.F., and Buzsaki, G., 1988, Alterations in excitatory and GABAergic inhibitory connections in hippocampal transplants. Neurosci., 27: 373–385.CrossRefGoogle Scholar
  10. Isacson, 0., Dunnett, S.B., and Bjorklund. A., 1986, Behavioral recovery in an animal model of Huntington’s disease. Proc. Natl. Acad. Sci. ( USA ), 83: 2728–2732.PubMedCrossRefGoogle Scholar
  11. Kita, T., Kita, H., and Kitai, S.T., 1984, Passive electrical membrane properties of rat neostriatal neurons in an in vitro slice preparation. Brain Res., 300: 129–139.PubMedCrossRefGoogle Scholar
  12. McAllister, J.P., Walker, P.D., Zemanick, M.C., Weber, A.B., Kaplan, L. and Reynolds, M.A., 1985, Morphology of embryonic neostriatal cell suspensions transplanted into adult neostriatum. Dev. Brain Res., 23: 282–286.CrossRefGoogle Scholar
  13. Misgeld, U., Dost, H.U. and Frotscher, M., 1986, Late development of intrinsic excitation in rat neostriatum: an in vitro study. Dev. Brain Res. 27: 59–67.CrossRefGoogle Scholar
  14. McCormick, D.A., and Prince, D.A., 1987, Postnatal development of electrophysiological properties of rat cerebral cortical pyramidal neurones. J. Physiol., 393: 743–762.PubMedGoogle Scholar
  15. Mueller, A.L., Traub, J.S., and Schwartzkroin, P.A., 1984, Development of hyperpolarizing inhibitory postsynaptic potentials and hyperpolarizing response to r-aminobutyric acid in rabbit hippocampus studied in vitro. J. Neurosci., 4: 860–867.PubMedGoogle Scholar
  16. Norman, A.B., Lehman, M.N. and Sanberg, P.R., 1988, Functional effects of fetal striatal transplants. Brain Res. Bull. 22: 163–172.Google Scholar
  17. Pritzel, M., Isacson, 0., Brundin, P., Wiklund L. and Bjorklund, A., 1986, Afferent and efferent connections of striatal grafts implanted into the ibotenic acid lesioned neostriatum. X Expl.Brain Res., 65: 112–126.Google Scholar
  18. Schmidt, R.H., Bjorklund, A., and Stenevi, U., 1981, Intracerebral grafting of dissociated tissue suspensions: A new approach for neural transplantation to deep brain sites. Brain Res., 218: 347–356.PubMedCrossRefGoogle Scholar
  19. Sirinathsinghji, D.J.S., Dunnett, S.B., Isacson, O., Clarke, D.J., Kendrick,K. and Bjorklund, A., 1988, Striatal grafts in rats with unilateral neostriatal lesions - II. In vivo monitoring of GABA release in globus pallidus and substantia nigra. Neurosci., 24: 803–811.Google Scholar
  20. Schwartzkroin, P.A. and Altschuler, R.S., 1977, Development of kitten hippocampal neurons. Brain Res., 134: 429–444.PubMedCrossRefGoogle Scholar
  21. Tauck, D.L. and Nadler, J.V., 1985, Evidence for functional mossy fiber sprouting in hippocampal formation of kaínic acid-treated rats. J. Neurosci., 5: 1016–1022.PubMedGoogle Scholar
  22. Walker, P.D., Chovanes, G. and McAllister, J.P., 1987, Identification of acetylcholine-reactive neurons and neuropil in neostriatal transplant. J. Comp. Neurol., 259: 1–12.Google Scholar
  23. Walsh, J.P., Zhou, F.C., Hull, C.D., Fisher, R.S., Levine, M.S. and Buchwald, N.A., 1988, Physiological and morphological characterization of striatal neurons transplanted into the striatum of adult rats, Synapse, 2: 37–44.PubMedCrossRefGoogle Scholar
  24. Wictorin, K., Clark, D.J., Bolam, J.P. and Bjorklund, A., 1989a, Host corticostriatal fibers establish synaptic connections with grafted striatal neurons in the ibotenic acid lesioned striatum. Eur. J. Neurosci., 1: 189–195.PubMedCrossRefGoogle Scholar
  25. Wictorin, K., Ouimet, C.C. and Bjorklund, A., 1989b, Intrinsic organization and connectivity of intrastriatal striatal transplants in rats as revealed by DARPP-32 immunohistochemistry: Specificity of connections with the lesioned host brain. Eur. J. Neurosci., 1: 690–701.PubMedCrossRefGoogle Scholar
  26. Wictorin, K., Isacson, 0., Fisher, W., Nothias, F., Peschanske, M., and Bjorklund, A., 1988, Connectivity of striatal grafts implanted into the ibotenic acid-lesioned striatum - I. Subcortical afferents. Neurosci., 27: 547–562.Google Scholar
  27. Wilson, C.J., Emson, P. and Feler, C., 1987, Electrophysiological evidence for the formation of a corticostriatal pathway in neostriatal tissue grafts. Soc. Neurosci. Abst., 13: 11.Google Scholar
  28. Wilson, C.J., 1984, Passive cable properties of dendritic spines and spiny neurons. J. Neurosci., 4: 281–297.PubMedGoogle Scholar
  29. Wilson, C.J., 1988, Cellular mechanisms controlling the strength of synapses. J. Electron Microsc., 10: 293–313.CrossRefGoogle Scholar
  30. Zhou, F.C., Buchwald, N.A., Hull, C.D., and Towle, A., 1989, Neuronal and glial elements of fetal neostriatal grafts in the adult neostriatum. Neurosci., 30: 19–31.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • John P. Walsh
    • 1
  • Chester D. Hull
    • 1
  • Carlos Cepeda
    • 1
  • Michael S. Levine
    • 1
  • Nathaniel A. Buchwald
    • 1
  1. 1.Mental Retardation Research CenterUniversity of CaliforniaLos AngelesUSA

Personalised recommendations