Organization of Cholinergic Perikarya in the Caudate Nucleus of the Cat with Respect to Heterogeneities in Enkephalin and Substance P Staining

  • Maryann E. Martone
  • Stephen J. Young
  • David M. Armstrong
  • Philip M. Groves
Part of the Advances in Behavioral Biology book series (ABBI, volume 39)


We present here a series of studies examining the organization of cholinergic perikarya in the caudate nucleus of the cat and their relationship to heterogeneities observed in enkephalin and substance P staining. Cholinergic interneurons comprise only a small proportion of the total number of striatal cells (Phelps et al., 1985). Most studies have not reported any obvious organization in the distribution of these cells in single sections (Fibiger, 1982) although some authors have commented that they did not appear to be evenly distributed but were organized into poorly defined clusters (Everitt et al., 1988; Mesulam et al., 1984). In addition, no consistent relationship has been demonstrated between the cholinergic perikarya and the striosomal compartment as delineated by acetylcholinesterase. While cholinergic neuropil and the high affinity choline uptake system are distributed primarily within the matrix (Graybiel et al., 1986; Rhodes et al., 1987), cholinergic cell bodies have been reported to occur both within patch and matrix in equal densities (Brand, 1980) or to be slightly increased in density within the matrix compartment (Graybiel et al., 1983, 1986).


Caudate Nucleus Cholinergic Neuron Dorsal Striatum Cholinergic Cell Striatal Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beckstead, R. M., 1987, Striatal substance P cell clusters coincide with the high density terminal zones of the discontinuous nigrostriatal dopaminergic projection system in the cat: A study by combined immunohistochemistry and autoradiographic axon-tracing, Neuroscience. 20: 557.PubMedCrossRefGoogle Scholar
  2. Beckstead, R. M. and Kersey, K. S., 1985, Immunohistochemical demonstration of differential substance P-, Met-enkephalin-, and glutamic-acid-decarboxylasecontaining cell body and axon distributions in the corpus striatum of the cat, J. Comp. Neurol.. 232: 481.PubMedCrossRefGoogle Scholar
  3. Beckstead, R. M., Wooten, G.F. and Trugman, J. M., 1988, Distribution of D1 and D2 dopamine receptors in the basal ganglia of the cat determined by quantitative autoradiography, J. Comp. Neurol., 268: 131.PubMedCrossRefGoogle Scholar
  4. Bolam, J. P., Ingham, C. A., Izzo, P. N., Levey, A. I., Rye, D. B., Smith, A. D. and Wainer, B.H.,1986, Substance P-containing terminals in synaptic contact with cholinergic neurons in the neostriatum and basal forebrain: A double immunocytochemical study in the rat, Brain Res., 397: 279.Google Scholar
  5. Bolam, J. P. and Izzo, P. N., 1987, Possible sites of transmitter interaction in the neostriatum: An anatomical approach, in Sandler, M., Feuerstein, C. and Scatton, B. (eds) Neurotransmitter interactions in the basal ganglia, New York: Raven Press, p. 47.Google Scholar
  6. Bolam, J. P., Izzo, P. N. and Graybiel, A. M., 1988, Cellular substrate of the histochemically defined striosome/matrix system of the caudate nucleus: A combined Golgi and immunocytochemical study in cat and ferret Neuroscience. 24: 853.PubMedCrossRefGoogle Scholar
  7. Brand, S., 1980, A comparison of the distribution of acetylcholinesterase and muscarinic cholinergic receptors in the feline neostriatum Neurosci.Lett., 17: 113.PubMedCrossRefGoogle Scholar
  8. Chang, H. T., 1988, Dopamine-acetylcholine interaction in the rat striatum: A dual labeling immunocytochemical study, Brain Res. Bull., 21: 295.PubMedCrossRefGoogle Scholar
  9. Chang, H. T., Penny, G. R. and Kitai, S. T., 1987, Enkephalinergic-cholinergic interaction in the rat globus pallidus: A pre-embedding double-labeling immunocytochemistry study, Brain Res., 426: 197.PubMedCrossRefGoogle Scholar
  10. DiFiglia, M. and Carey, J., 1986, Large neurons in the primate neostriatum examined with the combined Golgi-electron microscopic method, J. Comp. Neurol., 244: 36.PubMedCrossRefGoogle Scholar
  11. Everitt, B. J., Sirkia, T. E., Roberts, A. C., Jones, G. H. and Robbins, T. W., 1988, Distribution and some projections of cholinergic neurons in the brain of the common marmoset, Callithrix jacchus, J. Comp. Neurol., 271: 533.PubMedCrossRefGoogle Scholar
  12. Fage, D. and Scatton, B., 1986, Opposing effects of D-1 and D-2 receptor antagonists on acetylcholine levels in the rat striatum, European. J. Pharmacol., 129: 359.CrossRefGoogle Scholar
  13. Fibiger, H. C., 1982, The organization and some projections of cholinergic neurons of the mammalian forebrain, Brain Res. Rev., 4: 327.CrossRefGoogle Scholar
  14. Gerfen, C. R. and Young, W. S., 1988, Distribution of striatonigral and striatopallidal peptidergic neurons in both patch and matrix compartments: An in situ hybridization histochemistry and fluorescent retrograde tracing study, Brain Res., 460: 161.PubMedCrossRefGoogle Scholar
  15. Graybiel, A.M., 1984, Correspondence between the dopamine islands and striosomes of the mammalian striatum Neuroscience. 13: 1157.PubMedCrossRefGoogle Scholar
  16. Graybiel, A. M., Baugham, R. W. and Eckenstein, F., 1986, Cholinergic neuropil of the striatum observes striosomal boundaries, Nature, 323: 625.PubMedCrossRefGoogle Scholar
  17. Graybiel, A. M. and Chesselet, M.-F., 1984, Compartmental distribution of striatal cell bodies expressing [Met] enkephalin-like immunoreactivity, Proc. Natl. Acad. Sci. USA, 81: 7980.PubMedCrossRefGoogle Scholar
  18. Graybiel, A. M., Chesselet, M.-F., Wu, J.-Y., Eckenstein, F. and Joh, T. E., 1983, The relation of striosomes in the caudate nucleus of the cat to the organization of early developing dopaminergic fibers, GAD-positive neuropil, and CAT-positive neurons, Soc. Neurosci. Abstr., 9: 14.Google Scholar
  19. Graybiel, A. M., Ragsdale, C. W., Yoneoka, E. S. and Elde, R. P., 1981, An immunohistochemical study of enkephalins and other neuropeptides in the striatum of the cat with evidence that the opiate peptides are arranged to form mosaic patterns in register with the striosomal compartments visible by acetylcholinesterase staining, Neuroscience, 6: 377.PubMedCrossRefGoogle Scholar
  20. Groves, P. M., Martone, M., Young, S. J. and Armstrong, D. M., 1988, Three-dimensional pattern of enkephalin-like immunoreactivity in the caudate nucleus of the cat, J. Neurosci., 8: 892.PubMedGoogle Scholar
  21. Haber, S. and Elde, R., 1981, Correlation between met-enkephalin and substance P immunoreactivity in the primate globus pallidus, Neuroscience. 6: 1291.PubMedCrossRefGoogle Scholar
  22. Izzo, P. N., Graybiel, A. M. and Bolam, J. P., 1987, Characterization of substance P-and [met]enkephalin-immunoreactive neurons in the caudate nucleus of cat and ferret by a single section Golgi procedure, Neuroscience. 20: 577.PubMedCrossRefGoogle Scholar
  23. Jimenez-Castellanos, J. and Graybiel, A. M., 1987, Subdivisions of the dopamine-containing A8–A9-A10 complex identified by their differential mesostriatal innervation of striosomes and extrastriosomal matrix, Neuroscience, 23: 223.PubMedCrossRefGoogle Scholar
  24. Kubota, Y., lnagaki, S., Shimada, S., Kito, S., Eckenstein, F. and Tohyama, M., 1987, Neostriatal cholinergic neurons receive direct synaptic inputs from dopaminergic axons, Brain Res., 413: 179.PubMedCrossRefGoogle Scholar
  25. Malach, R. and Graybiel, A. M., 1986, Mosaic architecture of the somatic sensory-recipient sector of the cat’s striatum. J. Neurosci., 6: 3436.PubMedGoogle Scholar
  26. Martone, M., Young, S. J., Armstrong, D. M. and Groves, P. M., 1989, Ultrastructural examination of enkephalin and substance P input to cholinergic neurons in the rat neostriatum. Soc. Neurosci. Abstr. 15: 911.Google Scholar
  27. Mesulam, M.-M., Mufson, E. J., Levey, A. I. and Wainer,B. H., 1984, Atlas of cholinergic neurons in the forebrain and upper brainstem of the macaque based on monoclonal choline acetyltransferase immunohistochemistry and acetylcholinesterase histochemistry, Neuroscience. 3: 669.CrossRefGoogle Scholar
  28. Penny, G. R., Afsharpour and Kitai, S. T.,1986, The glutamate decarboxylase, leucine enkephalin-, methionine enkephalin-and substance P-immunoreactive neurons in the neostriatum of the rat and cat: Evidence for partial population overlap, Neuroscience. 17:1011.Google Scholar
  29. Penny, G. R., Wilson, C. J. and Kitai, S. T., 1988, Relationship of the axonal and dendritic geometry of spiny projection neurons to the compartmental organization of the neostriatum, J. Comp. Neurol., 269: 275.PubMedCrossRefGoogle Scholar
  30. Phelps, P. E., Houser, C. R. and Vaughn, J. E., 1985, Immunocytochemical localization of choline acetyltransferase within the rat neostriatum: A correlated light and electron microscopic study of cholinergic neurons and synapses, J. Comp. Neurol., 238: 286.PubMedCrossRefGoogle Scholar
  31. Ragsdale, C. W. and Graybiel, A. M., 1981, The fronto-striatal projections in the cat and monkey and its relationship to inhomogeneities established by acetylcholinesterase histochemistry, Brain Res., 208: 259.PubMedCrossRefGoogle Scholar
  32. Rhodes, K. J., Joyce, J. N., Sapp, D. W. and Marshall, J. F., 1987, [3H] Hemicholinium3 binding in rabbit striatum: Correspondence with patchy acetylcholinesterase staining and a method for quantifying striatal compartments, Brain Res., 412: 400.Google Scholar
  33. Schwaber, J. S., Rogers, W. T., Satoh, K. and Fibiger, H. C., 1987, Distribution and organization of cholinergic neurons in the rat forebrain demonstrated by computer-aided data acquisition and three-dimensional reconstruction, J. Comp. Neurol., 263: 309.PubMedCrossRefGoogle Scholar
  34. Wilson, C. J. and Groves, P. M., 1980, Fine structure and synaptic connections of the common spiny neuron of the rat neostriatum: A study employing intracellular injection of horseradish peroxidase, J. Comp. Neurol., 194: 599.PubMedCrossRefGoogle Scholar
  35. Young, S. J., Royer, S. M., Groves, P. M. and Kinnamon, J. C., 1987, Three-dimensional reconstructions from serial micrographs using the IBM PC, J. Electron Microsc. Tech., 6: 207.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Maryann E. Martone
    • 1
  • Stephen J. Young
    • 1
  • David M. Armstrong
    • 2
  • Philip M. Groves
    • 1
  1. 1.Departments of Psychiatry and NeuroscienceUniversity of California San DiegoSan DiegoUSA
  2. 2.Georgetown Institute of NeurosciencesFIDIAUSA

Personalised recommendations