Modulation of Gene Expression by Neuronal Lesions in the Rat Striatum

  • Philippe Vernier
  • Elisabeth Brault
  • Jean-François Julien
  • Pierre Rataboul
  • Sylvie Berrard
  • Jacques Mallet
Part of the Advances in Behavioral Biology book series (ABBI, volume 39)


Neurons have the ability not only to modify their physiological characteristics but also their morphology and their synaptic contacts, in response to lesions of the cells with which they are connected. These functional and anatomical modifications are termed “adaptative”, without preconceiving their contribution to a process of restoration of the neural function (Zigmond and Bowers 1981). Adaptative changes are clearly observed during the course of neurological disorders like neurodegenerative diseases, where they contribute to the genesis of clinical symptoms.


Glutamate Decarboxylase Nigrostriatal Pathway Striatal Cell Dopaminergic Nigrostriatal Pathway Dopaminergic Denervation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akiyama, H. and McGeer, P.L. (1989) Microglial response to 6-hydroxydopamine-induced substantia nigra lesions. Brain Res., 489: 247–253.PubMedCrossRefGoogle Scholar
  2. Allen, J.M., Abrass I.B. and Palmiter, R.D. (1989) 132-adrenergic receptor regulation after transfection into a cell line deficient in the cAMPdependent proteine kinase. Mol. Pharmacol., 36: 248–255.PubMedGoogle Scholar
  3. Ayala, J., Olofsson, B., Touchot, N., Zahraoui, A., Tavitian, A. and Prochiantz, A. (1989) Developmental and regional expression of three new members of the ras-gene family in the mouse brain. J. Neurosci. Res. 22: 384–389.PubMedCrossRefGoogle Scholar
  4. Berrard, S., Brice, A., Lottspeich, F., Braun, A., Barde, Y.A. and Mallet, J. (1987) cDNA cloning and complete sequence of porcine choline acetyltransferase: In vitro translation of the corresponding mRNA yields an active protein. Proc. Natl. Acad. Sci. USA, 84: 9280–9284.PubMedCrossRefGoogle Scholar
  5. Black, I.B., Adler, J.E., Dreyfus, C.F., Friedman, W.F., LaGamma, E.F. & Roach, A.H. (1987) Biochemistry in information storage in the nervous system. Science, 236, 1263–1268.PubMedCrossRefGoogle Scholar
  6. Brice, A., Berrard, S., Raynaud, B., Ansieau, S., Coppola, T., Weber, M. and Mallet, J. (1989) Complete sequence of a cDNA encoding an active rat choline acetyltransferase: A tool to investigate the plasticity of cholinergic phenotype expression. J. Neurosci.Res. 23: 266–273.PubMedCrossRefGoogle Scholar
  7. Bunzow, J.R., VanTol, H.H.M., Grandy, D.K., Albert, P., Salon, J., Christie, M., Machida, C.A., Neve, K.A. and Civelli, O. (1988) Cloning and expression of a rat D2 dopamine receptor. Nature 336: 783–787.PubMedCrossRefGoogle Scholar
  8. Chang, H.T. (1988) Dopamine-acetylcholine interaction in the rat striatum: a dual-labeling immunocytochemical study. Brain Res. Bull. 21: 295–304.PubMedCrossRefGoogle Scholar
  9. Changeux, J.P., Klarsfeld, A. & Heidmann T. (1987) The acetylcholine receptor and molecular models for short-term and long-term memory in: The Neural and Molecular Bases of Learning, eds Changeux, J.P. & Konishi, M. J.Wiley & Sons Ld, Chichester, pp. 31–84.Google Scholar
  10. Creese, I. and Snyder, S.H. (1979) Nigrostriatal lesions enhance striatal [3H]-apomorphine and [3H]-spiroperidol binding. Eur. J. Pharmacol., 56: 277–281.PubMedCrossRefGoogle Scholar
  11. Dal Toso, R., Sommer, B., Ewert, M., Herb, A., Pritchett, D.B., Bach, A., Shivers, B. and Seeburg, P.H., (1989) The dopamine D2 receptor: Two molecular forms generated by alternative splicing. EMBO J. 8: 4025–4034.Google Scholar
  12. Fage, D., Guerin, B., Feuerstein, C., Demenge, P. & Scatton, B. (1984) Time course of the changes in striatal acetylcholine levels induced by pergolide and haloperidol after lesion of the nigro-striatal dopaminergic pathway in the rat. Brain Res., 310, 379–383.PubMedCrossRefGoogle Scholar
  13. Faucon Biguet, N., Buda, M., Lamouroux, A., Samolyk, D. & Mallet, J. (1986) Time course of the changes of TH mRNA in rat brain and adrenal medulla after a single injection of reserpine. EMBO J. 5, 287–291.Google Scholar
  14. Filloux, F., Dawson, T.M. and Wamsley, J.K. (1988) Localisation of nigrostriatal dopamine receptor subtypes and adenylate cyclase. Brain Res. Bull., 20: 447–459.PubMedCrossRefGoogle Scholar
  15. Girault, J.A., Spampinato, U., Glowinski, J. & Besson, M.J. (1986) In vivo release of (3H) -aminobutyric acid in the rat neostriatum-I. Characterization and topographical heterogeneity of the effects of dopaminergic and cholinergic agents. Neuroscience, 19, 1109–1117.PubMedCrossRefGoogle Scholar
  16. Ingham, C. and Arbuthnott, G.W. (1990) Spine density on neostriatal neurones changes with 6-hydroxydopamine lesions and with age. Brain Res. 503: 334–338.CrossRefGoogle Scholar
  17. Julien,-J.F., Legay, F., Dumas, S., Tappaz, M. & Mallet, J. (1987) Molecular cloning, expression and in situ hybridization of rat brain glutamic acid decarboxylase mRNA. Neurosci. Lett., 173–180.Google Scholar
  18. Julien, J.F., Samama, Ph. and Mallet J. (1990) Rat brain glutamic acid decarboxylase sequence deduced from a cloned cDNA. J. Neurochem. 54: 703–705.PubMedCrossRefGoogle Scholar
  19. Kubota, Y., Inagaki, S., Kito, S., Takagi, H. & Smith, A.D. (1986) Ultrastructural evidence of dopaminergic input to enkephalinergic neurons in rat neostriatum. Brain Res. 367, 374–378.PubMedCrossRefGoogle Scholar
  20. Kubota, Y., Inagaki, S., Kito, S. & Wu, J.Y. (1987) Dopaminergic axons directly make synapses with GABAergic neurons in the rat striatum. Brain Res., 406, 147–156.PubMedCrossRefGoogle Scholar
  21. Kubota, Y., Inagaki, S., Shimada, S., Kito, S., Eckenstein, F. and Tohyama, M. (1987) Neostriatal cholinergic neurons receive direct synaptic inputs from dopaminergic axons. Brain Res. 413: 179–184.PubMedCrossRefGoogle Scholar
  22. Lehman, J. and Langer, S.Z. (1983) The striatal cholinergic interneuron: Synaptic target of dopaminergic terminals? Neuroscience 10: 1105–1120.CrossRefGoogle Scholar
  23. MacKenzie, R.G., Stachowiak, M.K. and Zigmond, M.J. (1989) Dopaminergic inhibition of striatal acetylcholine release after 6-hydroxydopamine. Eur. J. Pharmacol. 168: 43–52.PubMedCrossRefGoogle Scholar
  24. Marshall, J.F. (1985) Neural plasticity and recovery of function after brain injury. in International Review of Neurobiology, eds. Smythies, J.R. & Bradley, R.J., vol. 26 ( Academic Press, Inc. London ), pp. 201–247.Google Scholar
  25. Morris, B.J., Herz, A. and Höllt, V. (1989) Localization of striatal opioid gene expresion, and its modulation by the mesostriatal dopamine pathway: an in situ hybridization study. J. Mol. Neurosci. 1: 9–18.PubMedCrossRefGoogle Scholar
  26. Penny, G.R., Afsharpour, S. & Kitai, S.T. (1986) The glutamate decarboxylase, leucine enkephalin-methionine enkephalin and substance P immunoreactive neurons in the neostriatum of the rat and cat: evidence for partial population overlap. Neuroscience, 17, 1011–1045.PubMedCrossRefGoogle Scholar
  27. Rataboul, P., Faucon Biguet, N., Vernier, P., De Vitry, F., Boularand, S., Privat, A. & Mallet, J. (1987) Identification of human GFAP cDNA: a tool for the molecular analysis of reactive gliosis in the mammalian central nervous system. J. Neurosci. Res., 20: 165–175.CrossRefGoogle Scholar
  28. Rataboul, P., Vernier, P., Faucon Biguet, N., Mallet, J., Poulat, P. and Privat, A. (1988) Modulation of GFAP mRNA levels following toxic lesions in the basal ganglia of the rat. Brain Res. Bull., 22: 155–161.CrossRefGoogle Scholar
  29. Rhyner, T.A., Faucon Biguet, N., Berrard, S., Borbély, A.A. and Mallet, J. (1986) An efficient approach for the selective isolation of specific transcripts from complex brain mRNA populations. J. Neurosci. Res., 16: 167–181.PubMedCrossRefGoogle Scholar
  30. Scheel-Krüger, J. (1986) Dopamine-GABA interactions: evidence that GABA tranmits, modulates and mediates dopaminergic functions in the basal ganglia and the system. Acta Neurol. Scand. Suppl. 107, 1–47.PubMedGoogle Scholar
  31. Schultz, W. and Ungerstedt, U. (1978) Short-term increase and long term reversion of striatal cell activity after degeneration of the nigrostriatal dopamine system. Exp. Brain Res., 33: 159–171.PubMedCrossRefGoogle Scholar
  32. Segovia, J. and Garcia-Munoz, M. (1987) Changes in the activity of GAD in the basal ganglia of the rat after striatal dopaminergic denervation. Neuropharmacology, 26: 1449–1451.PubMedCrossRefGoogle Scholar
  33. Staunton, D.A., Wolfe, B.A., Groves, P.M. and P.B. Molinoff. (1981) Dopamine receptor changes following destruction of the nigrostriatal pathway: lack of relationship to rotational behavior. Brain Res. 211: 315PubMedCrossRefGoogle Scholar
  34. Stromberg,I., Bjorklund, H., Dahl, D., Jonsson, G., Sundstrom, E. & Olson, L. (1986) Astrocyte responses to dopaminergic denervations by 6-hydroxydopamine and 1-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine as evidenced by glial fibrillary acidic protein immunohistochemistry. Brain Res. Bull., 17, 225–236.PubMedCrossRefGoogle Scholar
  35. Ungerstedt, U. (1971) Postsynaptic supersensitivity after 6- hydroxydopamine induced degeneration of nigrostriaral dopaminergic system. Acta Physiol. Scand., Suppl. 367: 95–122.Google Scholar
  36. Vernier, P., Julien, J.F., Rataboul, P., Fourrier, O., Feuerstein, C. and Mallet, J. (1988) Similar time course changes in striatal levels of glutamic acid decarboxylase and proenkephalin mRNA following dopaminergic deafferentation in the rat. J.Neurochem. 51: 1375–1380.PubMedCrossRefGoogle Scholar
  37. Vincent, S.R., Nagy, J.I. & Fibiger, H.O (1978) Increased striatal glutamate decarboxylase after lesions of the nigrostriatal pathway. Brain Res., 143, 168–173.PubMedCrossRefGoogle Scholar
  38. Yavin, E., Gil, S., Consolazione, A., dal Toso, R. and Leon, A. (1987) Selective enhancement of tubulin gene expression and increase in oligo(dT)-bound RNA in the rat brain after nigrostriatal pathway unilateral lesion and treatment with ganglioside. J. Neurosci. Res., 18: 615–620.PubMedCrossRefGoogle Scholar
  39. Yoshikawa, K., Williams, C. & Sabol, S.L. (1984) Rat brain preproenkephalin mRNA. J. Biol. Chem., 259, 14301–14308.PubMedGoogle Scholar
  40. Young, S.W., Bonner, T.I. & Brann, M.R. (1986) Mesencephalic dopamine neurons regulate the expression of neuropeptides mRNAs in the rat forebrain. Proc. Nat. Acad. Sci. USA., 83, 9827–9831.PubMedCrossRefGoogle Scholar
  41. Zigmond, R.E. and Bowers, C.W. (1981) Influence of nerve activity on the macromolecular content of neurons and their effector organs. Ann. Rev. Physiol. 43: 673–687.CrossRefGoogle Scholar
  42. Zigmond, M.J. and Stricker, E.M. (1984) Parkinson’s disease: Studies with an animal model. Life Sci. 35: 5–18.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Philippe Vernier
    • 1
  • Elisabeth Brault
    • 1
  • Jean-François Julien
    • 1
  • Pierre Rataboul
    • 1
  • Sylvie Berrard
    • 1
  • Jacques Mallet
    • 1
  1. 1.Laboratoire de Neurobiologie Cellulaire et MoléculaireC.N.R.S.Gif-sur-Yvette CedexFrance

Personalised recommendations