Advertisement

Coexpression of Neuropeptides and Glutamic Acid Decarboxylase in Cat Striatal Neurons: Dependence Striosomal Compartmentation

  • Marie-Jo Besson
  • Ann M. Graybiel
  • Bruce Quinn
Part of the Advances in Behavioral Biology book series (ABBI, volume 39)

Abstract

In the last two decades, there has been a sharp increase in information about the input-output systems that link the striatum with other parts of the basal ganglia and their allied nuclei as well as with the cerebral cortex and thalamus. During the same time, many of the newly-discovered neuropeptide and amino acid neuromodulators have been found in the caudate-putamen complex, joining the “classical” neurotransmitters of this region: dopamine, acetylcholine, and gamma-aminobutyric acid (GABA).

Keywords

Glutamic Acid Decarboxylase Striatal Neuron Positive Neuron Striatal Projection Neuron Matrix Compartment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boylan, M.K., Levine, M.S., Buchwald, N.A., and Fisher, R.S., 1990, Patterns of tachykinin expression and localization in developing feline neostriatum, J. Comp. Neurol., 293: 151.PubMedCrossRefGoogle Scholar
  2. Beckstead, R.M., 1987, Striatal substance P cell clusters coincide with the high density terminal zones of the discontinuous nigrostriatal dopaminergic projection system in the cat: a study by combined immunohistochemistry and autoradiographic axon-tracing, Neuroscience, 20: 557.PubMedCrossRefGoogle Scholar
  3. Besson, M.J., Graybiel, A.M., and Quinn, B., 1990, Patterns of coexpression of neuropeptides and glutamic acid decarboxylase in neurons of the striatum: an immunohistochemical study in the cat, Neuroscience, in press.Google Scholar
  4. Ceccatelli, S., Villar, M.J., Goldstein, M., and Hokfelt, T., 1989, Expression of c-fos immunoreactivity in transmitter-characterized neurons after stress, Proc. Natl. Acad. Sci., 86: 9569.PubMedCrossRefGoogle Scholar
  5. Chesselet, M.F., and Graybiel, A.M., 1983, Met-enkephalin-like and dynorphin-like immunoreactivities of the basal ganglia of the cat, Life Sci., 33: 37.PubMedCrossRefGoogle Scholar
  6. Chesselet, M.F., Weiss, L., Wuenschell, C., Tobin, A.J., and Affolter, H.U., 1987, Comparative distribution of mRNAS for glutamic acid decarboxylase, tyrosine hydroxylase and tachykinins in the basal ganglia: an in situ hybridization study in the rodent brain, J. Comp. Neurol., 262: 125.PubMedCrossRefGoogle Scholar
  7. Collingridge, G.L., and Davies, J., 1982, Actions of substance P and opiates in the rat substantia nigra, Neuropharmacology, 21: 715.PubMedCrossRefGoogle Scholar
  8. Gerfen, C.R., and Young, W.S., 1988, Distribution of striatonigral and striatopallidal peptidergic neurons in both patch and matrix compartments: an in situ hybridization histochemistry and fluorescent retrograde tracing study, Brain Res., 460: 161.PubMedCrossRefGoogle Scholar
  9. Graybiel, A.M., and Chesselet, M.F., 1984, Compartmental distribution of striatal cell bodies expressing [Met]enkephalin-like immunoreactivity, Proc. Nat. Acad. Sci., 81: 7980.PubMedCrossRefGoogle Scholar
  10. Graybiel, A.M., and Ragsdale, C.W., 1978, Histochemically distinct compartments in the striatum of human, monkey and cat demonstrated by acetylthiocholinesterase staining. Proc. Nat. Acad. Sci., 75: 5723.PubMedCrossRefGoogle Scholar
  11. Graybiel, A.M., Ragsdale, C.W., Yoneoka, E.S., and Elde, R.P., 1981, An immunohistochemical study of enkephalins and other neuropeptides in the striatum of the cat with evidence that the opiates peptides are arranged to form mosaic patterns in register with the striosomal compartments visible by acetylcholinesterase staining, Neuroscience, 6: 377.PubMedCrossRefGoogle Scholar
  12. Graybiel, A.M., Pickel, V.M., Joh, T.H., Reis, D.J., and Ragsdale, C.W., 1981, Direct demonstration of a correspondence between the dopamine islands and acetylcholinesterase patches in the developing striatum, Proc. Natl. Acad. Sci., 78: 5871.PubMedCrossRefGoogle Scholar
  13. Graybiel, A.M., 1990, Neurotransmitters and neuromodulators in the basal ganglia, Trends in Neurosciences, in press.Google Scholar
  14. Horikawa, S., Takai, T., Toyosato, M., Takahashi, H., Noda, M., Kakidana, H., Kubo, T., Hirose, T., Inayama, S., Hayashida, H., Miyata, T., and Numa, S., 1983, Isolation and structural organization of the human preproenkephalin B gene, Nature 306: 611.PubMedCrossRefGoogle Scholar
  15. Innis, R.B., Andrade, R., and Aghajanian, G.K., 1985, Substance K excite dopaminergic and non-dopaminergic neurons in rat substantia nigra, Brain Res., 335: 381.PubMedCrossRefGoogle Scholar
  16. Izzo, P.N., Graybiel, A.M., and Bolam, J.P., 1987, Characterization of substance P and [Met]enkephalin immunoreactive neurons in the caudate nucleus of cat and ferret by a single section Golgi procedure, Neuroscience 20: 577.PubMedCrossRefGoogle Scholar
  17. Jimenez-Castellanos, J., and Graybiel, A.M., 1989, Compartmental origins of striatal efferent projections in the cat, Neuroscience, 32: 297.PubMedCrossRefGoogle Scholar
  18. Kakidani, H., Furutani, Y., Takahashi, H., Noda, M., Morimoto, Y., Mirose, T., Asai, M., Inayama, S., Nakanishi, S. and Numa, S., 1982, Cloning and sequence analysis of CDNA for porcine a-neo-endorphin/dynorphin precursor, Nature, 298: 245.PubMedCrossRefGoogle Scholar
  19. Lavin, A., and Garcia-Munoz, M., 1986, Electrophysiological changes in substantia nigra after dynorphin administration, Brain Res. 369: 298.PubMedCrossRefGoogle Scholar
  20. Nawa, H., Kotani, H., and Nakanishi, S., 1984, Tissue-specific generation of two preprotachykinin mRNAS from one gene by alternative RNA splicing, Nature, 312: 729.PubMedCrossRefGoogle Scholar
  21. Oertel, W.H., and Mugnaini, E., 1984, Immunocytochemical studies of GABAergic neurons in rat basal ganglia and their relations to other neuronal systems. Neurosci. Lett., 47: 233.PubMedCrossRefGoogle Scholar
  22. Olson, L, Seiger, A, and Fuxe, K, 1972, Heterogeneity of striatal and limbic dopamine innervation: highly fluorescent islands in developing and adult rat, Brain Res., 44: 283.PubMedCrossRefGoogle Scholar
  23. Penny, G.R., Afsharpour, S., and Kitai, S.T., 1986, The glutamate decarboxylase-, leucine enkephalin-, methionine enkephalin-and substance P-immunoreactive neurons in the neostriatum of the rat and cat: envidence for partial population overlap, Neuroscience, 17: 1011.PubMedCrossRefGoogle Scholar
  24. Penny, G.R., Wilson, C.J., and Kitai, S.T., 1988, Relationship of the axonal and dendritic geometry of spiny projection neurons to the compartmental organization of the neostriatum, J. Comp. Neurol., 269: 275.PubMedCrossRefGoogle Scholar
  25. Pert, C.B., Kuhar, M.J., and Snyder, S., 1975, Autoradiographic localization of the opiate receptor in rat brain, Proc. Natl. Acad. Sci., 72: 1849.Google Scholar
  26. Pinnock, R.D., and Dray, A., 1982, Differential sensitivity of presumed dopaminergic neurons in rat substantia nigra to electrophoretically applied substance P, Neurosci. Lett., 29: 153.PubMedCrossRefGoogle Scholar
  27. Quinn, B., and Weber, E., 1987, Serial 2 micron cryostat sections: a modified colocalization technique for immunohitochemistry. Soc. Neurosci. Abst., 13: 777.Google Scholar
  28. Reiner, A., 1986, The co-occurrence of substance P-like immunoreactivity and dynorphin-like immunoreactivity in striatopallidal and striatonigral projection neurons in birds and reptiles, Brain Res., 371: 155.PubMedCrossRefGoogle Scholar
  29. Ribak, C.E., Vaughn, J.E., and Roberts, E., 1979, The GABA neurons and their axon terminals in rat corpus striatum as demonstrated by GAD immunocytochemistry. J. Comp. Neurol., 187: 281.CrossRefGoogle Scholar
  30. Sonnenberg, J.L., Rauscher, R.J., Morgan, J.I., and Curran, T., 1989, Regulation of proenkephalin by Fos and Jun, Science, 246: 1622.PubMedCrossRefGoogle Scholar
  31. Sugimoto, T., and Mizuno, N., 1987, Neurotensin in projection neurons of the striatum and nucleus accumbens with reference to coexistence with enkephalin and GABA: an immunohistochemical study in the cat, J. Comp. Neurol., 257: 383.PubMedCrossRefGoogle Scholar
  32. Tan, D.P., and Tsou, K., 1988, Differential effects of tachykinins injected intranigrally on striatal dopamine metabolism, J. Neurochem., 51: 1333.PubMedCrossRefGoogle Scholar
  33. Tennyson, V.M., Barret, R.E., Cohen, G., Cote, L., Heikkila, R., Mytilneous, C., 1972, The developing neostriatum of the rabbit: correlation of fluorescence histochemistry, electron microscopy, endogenous dopamine levels, and 3H dopamine uptake, Brain Res., 46: 251.PubMedCrossRefGoogle Scholar
  34. Walker, R.J., Kemp, J.A., Yajima, H., Kitagawa, K., and Woodruff, G.N., 1976, The action of substance P on mesencephalic reticular and substantia nigral neurones of the rat, Experientia, 32: 214.PubMedCrossRefGoogle Scholar
  35. Zamir, N., Palkovits, M., Weber, E., Mezey, E., and Brownstein, M.J., 1984 A dynorphinergic pathway of leu-enkephalin production in the substantia nigra, Nature 307: 643.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Marie-Jo Besson
    • 1
  • Ann M. Graybiel
    • 2
  • Bruce Quinn
    • 2
  1. 1.Laboratoire de Neurochimie-AnatomieIDN, CNRS-Universite P. et M. CurieParisFrance
  2. 2.Laboratory of NeuroanatomyDepartment of Brain & Cognitive Sciences M.I.T.CambridgeUSA

Personalised recommendations