Regulation of NT Receptors after Chronic Treatment with Typical and Atypical Neuroleptic Drugs

  • Laura Calzà
  • Luciana Giardino
  • Pier Vincenzo Piazza
  • Giuseppe Amato
Part of the Advances in Behavioral Biology book series (ABBI, volume 39)


Neurotensin is a tridecapeptide, which produces central effects such as hypotension, hypothermia, muscle relaxation, analgesia, antinociception, and reduces locomotor activity (Nemeroff et al., 1977). In the recent years, several lines of evidences indicated the great importance of the dopamine (DA)- neurotensin (NT) interaction taking place mostly in the mesolimbocortical areas, both at cell bodies (A10 DA-ergic group located in the ventral tegmental area -VTA-) and nerve terminal level (cerebral cortex, n. accumbens, olfactory tubercle, ventral n. caudato-putamen) (Quirion, 1983; Nemeroff, et al., 1984; Nemeroff, 1986). Immunocytochemical data indicated the presence of NT-like immunoreactivity in DA cell bodies in the VTA, including midline structures, with only single example of coexistence in the substantia nigra (Hokfelt et al., 1984). Anatomical data indicate that NT-like immunoreactive fibres, nerve terminals and also cell bodies are present in the basal ganglia (Kalivas, 1984; Sugimoto and Mizuno, 1987; Uhl et al, 1979). NT receptors are localized on the DA-ergic cell bodies in the ventral mesencephalon (Young and Kuhar, 1981). NT receptors are also reported to exist in the basal ganglia of the rat, on DA nerve terminals, intrinsic neurons and corticostriatal fibres (FIG. 1) (Quirion et al, 1985; Goedert et al., 1984).


Ventral Tegmental Area Olfactory Tubercle Ventral Mesencephalon Neurotensin Receptor Receptor Balance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Biorklund, A., and Lindvall, O., 1984, Dopamine containing systems in the CNS, in: “Handbook of Chemical Neuroanatomy. Vol. 2: Classical Transmitters in the CNS, Part I,” A. Biorklund and T. Hokfelt, eds., Elsevier, Amsterdam.Google Scholar
  2. Borison, R.L., and Diamond, B.I., 1983, Regional selectivity of neuroleptic drugs: an argument for site specificity, Brain Res. Bull., 11: 215.PubMedCrossRefGoogle Scholar
  3. Chiodo, L.A., and Bunney, B.S., 1983, Typical and atypical neuroleptics: differential effects of chronic administration on the activity of A9 and A10 midbrain dopaminergic neurons, J. Neurosci., 3: 1607.PubMedGoogle Scholar
  4. Claghorn, J., Honigfeld, G., Abuzahab, F.S., Wang, R., Steinbook, R., Tuason, V., and Klerman, G., 1987, The risks and benefits of clozapine versus chlorpromazine, J. Clin. Psychopharmacol., 7: 377.PubMedCrossRefGoogle Scholar
  5. Fabbri, P.L., Agnati, L.F., Fuxe, K., Battistini, N., Zini, I., and Zoli, M., 1985, Principles for the construction of the software for image analysis of transmitteridentified neurons, in: “Quantitative Neuroanatomy in Transmitter Research,” L.F. Agnati and K. Fuxe, eds., Macmillan Press, London.Google Scholar
  6. Frey, P., Fuxe, K., Eneroth, P., and Agnati, L.F., 1986, Effects of acute and long-term treatment with neuroleptics on regional neurotensin levels in the male rat, Neurochem. Int., 12: 33.CrossRefGoogle Scholar
  7. Giardino, L., Calzà, L., Zanni, M., Velardo, A., Pantaleoni, M., and Marrama, P., 1989, Daily modifications of 3H-naloxone binding sites in the rat brain: a quantitative autoradiographic study, Chronobiol. Int., 6: 203.PubMedCrossRefGoogle Scholar
  8. Giardino, L., Calzà, L., Piazza, P.V., and Amato, G., 1990, Opiate receptor modifications in the rat brain after chronic treatment with haloperidol and sulpiride, J. Psychopharm., 4, in press.Google Scholar
  9. Goedert, M., Mantyh, P.W., Emson, P.C., and Hunt, S.P., 1984, Inverse relationship between neurotensin receptors and neurotensin-like immunoreactivity in cat striatum, Nature, 307: 543.PubMedCrossRefGoogle Scholar
  10. Covoni, S., Hong, J.S., Yang, H.-Y., and Costa, E., 1980, Increase of neurotensin content elicited by neuroleptics in nucleus accumbens, J. Pharm. Exp. Ther., 215: 413.Google Scholar
  11. Graybiel, A.M., and Ragsdale, C.W., Jr., 1983, Biochemical anatomy of the striatum, in: “Chemical Neuroanatomy,” P.C. Emson, ed., Raven Press, New York.Google Scholar
  12. Joyce, J.N., Loeschen, S.K., and Marshall, J.F., 1985, Dopamine D2 receptors in rat caudate-putamen: the lateral to medial gradient does not correspond to dopaminergic innervation, Brain Res., 338: 209.PubMedCrossRefGoogle Scholar
  13. Herve, D., Tassin, J.P., Studler, J.M., Dana, C., Kitabgi, P., Vincent, J.P., and Glowinsky, J., 1986, Dopaminergic control of 125I-labeled neurotensin binding sites density in corticolimbic structures of the rat brain, Proc. Natl. Acad. Sci. USA., 83: 6203.PubMedCrossRefGoogle Scholar
  14. Hokfelt, T., Everitt, D.J., Theodorsson-Norheim, E., and Goldstein, M., 1984, Occurrence of neurotensin like immunoreactivity in subpopulations of hypothalamic, mesencephalic and medullary catecholamine neurons, J. Comp. Neurol., 222: 543.PubMedCrossRefGoogle Scholar
  15. Kalivas, P.W., 1984, Neurotensin in the ventromedial mesencephalon of the rat: anatomical and functional considerations, J. Comp. Neurol., 226: 495.PubMedCrossRefGoogle Scholar
  16. McEachron, D.L., 1986, Functional mapping in biology and medicine: computer assisted autoradiography, Karger, Basel.Google Scholar
  17. Nemeroff, C.B., 1986, The interaction of neurotensin with dopaminergic pathways in the central nervous system: basic neurobiology and implications for the pathogenesis and treatment of schizofrenia, Psychoneuroendocrinol., 11: 15.CrossRefGoogle Scholar
  18. Nemeroff, C.B., Bissette, G., Prange, A.J., Jr., Loosen, P.T. Barlow, T.S., and Lipton, M.A., 1977, Neurotensin: central nervous system effects of a hypothalamic peptide, Brain Res., 128: 485.PubMedCrossRefGoogle Scholar
  19. Nemeroff, C.B., Kalivas, P.W., and Prange, A.J., Jr., 1984, Interaction of neurotensin and dopamine in limbic structures, in: “Catecholamines: Neuropharmacology and Central Nervous System - Theoretical aspects,” E. Usdin, A. Carlsson, A. Dahlstrom, eds., Alan R. Liss, New York (1984).Google Scholar
  20. Palacios, J.M., 1986, Dopamine receptor disputes, Nature, 323: 205.PubMedCrossRefGoogle Scholar
  21. Paxinos, G., and Watson, C., 1986, The rat brain in stereotaxic coordinates, Academic Press, New York.Google Scholar
  22. Piazza, P.V., Giardino, L., Calzà, L., and Amato, G., 1989, Behavioral and neurochemical modifications induced by apomorphine treatment, Neurosci. Lett., 100: 265.CrossRefGoogle Scholar
  23. Piazza, P.V., Calzà, L., Giardino, L., and Amato, G., 1990, Chronic thioridazine treatment differently affects DA receptors in striatum and in mesolimbo-cortical systems, Pharm. Biochem. Behay., 35, in press.Google Scholar
  24. Quirion, R., 1983, Interactions between neurotensin and dopamine in the brain: An overview, Peptides, 4: 609.PubMedCrossRefGoogle Scholar
  25. Quirion, R., Chiueh, C.C., Everist, H.D., and Pert, A., 1985, Comparative localization of neurotensin receptors on nigrostriatal and mesolimbic dopaminergic terminals, Brain Res., 327: 385.PubMedCrossRefGoogle Scholar
  26. Radke, J.M., MacLennan, A.J., Beinfeld, M.C., Bissette, G., Nemeroff, C.B., Vincent, S.R., and Fibiger, H.C., 1989, Effects of short-and long-term haloperidol administration and withdrawal on regional brain cholecystokinin and neurotensin concentrations in the rat, Brain Res., 480: 176.CrossRefGoogle Scholar
  27. Richfield, E.K., Young, A.B., and Penney, J.B., 1987, Comparative distribution of dopamine D-1 and D-2 receptors in the basal ganglia of turtles, pigeons, rats, cats, and monkeys, J. Comp. Neurol., 262: 446.PubMedCrossRefGoogle Scholar
  28. Sugimoto, T., and Mizuno, N., 1987, Neurotensin in projection neurons of the striatum and nucleus accumbens, with reference to coexistence with enkephalin and GABA: an immunohistochemical study in the cat, J. Comp. Neurol., 257: 383.PubMedCrossRefGoogle Scholar
  29. Uhl, G.R., Goodman, R.R., and Snyder, S.H., 1979, Neurotensin containing cell bodies, fibers and nerve terminals in the brain stem of the rat: immunohistochemical mapping, Brain Res., 167:77.PubMedCrossRefGoogle Scholar
  30. Uhl, G.R., and Kuhar, M.J., 1984, Chronic neuroleptic treatment enhances neurotensin receptor binding in human and rat substantia nigra, Nature, 309: 350.PubMedCrossRefGoogle Scholar
  31. Young, W.S.III, and Kuhar, M.J., 1981, Neurotensin receptor localization by light microscopic autoradiography in rat brain, Brain Res., 206: 273.PubMedCrossRefGoogle Scholar
  32. White, F.J, and Wang, R.Y., 1983, Differential effects of classical and atypical antipsychotic drugs on A9 and A10 dopamine neurons, Science, 221: 1054.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Laura Calzà
    • 1
  • Luciana Giardino
    • 1
  • Pier Vincenzo Piazza
    • 2
  • Giuseppe Amato
    • 2
  1. 1.Inst. Human Physiology, Medical SchoolUniversity of CagliariItaly
  2. 2.Inst. Human Physiology, Medical SchoolUniversity of PalermoItaly

Personalised recommendations