Skip to main content

Distinct Cholinergic Control of Dopamine Release in Striosomal and Matrix Areas of the Cat Caudate Nucleus

  • Chapter
The Basal Ganglia III

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 39))

  • 159 Accesses

Abstract

Two anatomical compartments can be distinguished in the striatum of the adult cat and other mammalian species including the man. These compartments were revealed first by using acetylcholinesterase (AChE) as a marker; areas poor and rich in AChE being denominated respectively striosomes and matrix18. Then several other studies have shown that, these two main compartments can be distinguished further with other biochemical markers but also by their afferent and efferent projections. However, few investigations have been made yet on the functional properties of the striosomes and the matrix and on their relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Besson M.J., Graybiel A.M. and Nastuk M.A. (1988) Neurosci. 26, 101–119

    Article  CAS  Google Scholar 

  2. Besson M.J., Kemel M.L., Gauchy C. and Glowinski J. (1982) Brain Res. 241, 241–248

    Article  PubMed  CAS  Google Scholar 

  3. Bolam J.P. (1984) Ciba Found. Symp. 107, 30–47

    PubMed  CAS  Google Scholar 

  4. Carter C.J., L’heureux R. and Scatton B. (1988) J.Neurochem. 51, 462–468

    Article  PubMed  CAS  Google Scholar 

  5. Chesselet M.F. (1984) Neurosci. 12, 347–375

    Article  CAS  Google Scholar 

  6. Chesselet M.F. and Graybiel A.M. (1986) Neurosci. 17, 547–571

    Article  CAS  Google Scholar 

  7. Chesselet M.F. and Robbins E. (1989) Neurosc. Lett. 96, 47–53

    Article  CAS  Google Scholar 

  8. Crutcher M.D. and Delong M.R. (1983) Exp. Brain. Res. 130, 1–11

    Google Scholar 

  9. Desban M., Gauchy C., Kernel M.L., Besson M.J. and Glowinski J. (1989) Neurosci. 29, 551–566

    Article  CAS  Google Scholar 

  10. Faull R.L.M., Dragunow M. and Villiger J.W. (1988) Brain Res. 488, 381–386

    Article  Google Scholar 

  11. Gerfen C.R. (1984) Nature 311, 461–464

    Article  PubMed  CAS  Google Scholar 

  12. Gerfen C.R. (1989) Science 246, 385–388

    Article  PubMed  CAS  Google Scholar 

  13. Gerfen C.R., Baimbridge K.G. and Miller J.J. (1985) Proc. Natl. Acad. Sci. USA 82, 8780–8784.

    Google Scholar 

  14. Gerfen C.R., Herkenham M. and Thibault J. (1987) J. Neurosci. 7, 3915–3934.

    PubMed  CAS  Google Scholar 

  15. Gerfen C.R. and Scott Young W.S. (1988) Brain Res. 460, 161–167

    Article  PubMed  CAS  Google Scholar 

  16. Giorguieff M.F., Le Floc’h M.L., Glowinski J. and Besson M.J. (1977) J.P.E.T. 200, 535–544

    CAS  Google Scholar 

  17. Graybiel A.M., Baughman R.W. and Eckenstein F. (1986) Nature 323, 625–627.

    Article  PubMed  CAS  Google Scholar 

  18. Graybiel A.M. and Ragsdale C.W. (1978) Proc. Natl. Acad. Sci. USA 75, 5723–5726.

    Article  CAS  Google Scholar 

  19. Groves P.M., Martone M., Young S.J. and Armstrong D.M. (1988) J. Neurosci. 8, 892–900.

    PubMed  CAS  Google Scholar 

  20. Herkenham M. and Pert C.B. (1981) Nature 291, 415–417.

    Article  PubMed  CAS  Google Scholar 

  21. Jimenez-Castellanos J. and Graybiel A.M. (1987) Neurosci. 23, 223–243

    Article  CAS  Google Scholar 

  22. Jimenez-Castellanos J. and Graybiel A.M. (1989) Neurosci. 32, 297–321

    Article  CAS  Google Scholar 

  23. Joyce J.N., Sapp D.W. and Marshall J.F. (1986) Proc. Natl. Acad. Sci. USA 83, 8002–8006

    Google Scholar 

  24. Kernel M.L., Desban M., Glowinski J. and Gauchy C. (1989) Proc. Natl. Acad. Sci. USA 86, 9006–9010.

    Google Scholar 

  25. Malach R. and Graybiel A.M. (1986) J. Neurosci. 6, 3436–3558

    PubMed  CAS  Google Scholar 

  26. Mc Culloch J., Kelly P.A.T., Uddman R. and Edvinsson L. (1983) Proc. Natl. Acad.Sci. USA 80, 1472–1476.

    Google Scholar 

  27. Mulder A.H., Wardeh G., Hogenboom F. and Frankhuyzen A.L. (1984) Nature 308, 278–280.

    Article  PubMed  CAS  Google Scholar 

  28. Nastuk M.A. and Graybiel A.M. (1988) J. Neurosci. 8, 1052–1062

    PubMed  CAS  Google Scholar 

  29. Scatton B. and Lehmann J. Nature. (1982) 297, 422–424

    Article  PubMed  CAS  Google Scholar 

  30. Snider R.S. and Niemer W.T. A stereotaxic atlas of the cat brain. The university of Chicago Press Chicago IL (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Kemel, M.L., Desban, M., Glowinski, J., Gauchy, C. (1991). Distinct Cholinergic Control of Dopamine Release in Striosomal and Matrix Areas of the Cat Caudate Nucleus. In: Bernardi, G., Carpenter, M.B., Di Chiara, G., Morelli, M., Stanzione, P. (eds) The Basal Ganglia III. Advances in Behavioral Biology, vol 39. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5871-8_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5871-8_37

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5873-2

  • Online ISBN: 978-1-4684-5871-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics