Dopaminergic and Muscareinc Cholinergic Receptor Subtype: Localization to Neurotransmitters Specific Components of the Striatum

  • James K. Wamsley
  • Mary A. Hunt
Part of the Advances in Behavioral Biology book series (ABBI, volume 39)


Disorders of the striatum (for review see Albin et al., 1989) usually surface as disturbances in motor function (see Delong and Georgopoulos, 1982), although other functions are most certainly associated with the caudate as well. These disorders result in alterations of receptor populations within the caudate-putamen (Seeman et al., 1987). Knowledge of the neurotransmitter specific connections and their accompanying receptors within the striatum would provide a means of predicting the effects of a pharmacological agent, acting at dopaminergic or cholinergic receptor subtypes, on the overall output of the system. Such information would be invaluable in drug development and would add tc the general body of knowledge concerning the striatum’s role in movement. One way investigators have sought to understand the receptor specific connections within the striatum associated with dopaminergic and cholinergic receptor subtypes is by combining the techniques of autoradiography (Kuhar et al., 1986) and neurotoxin induced lesions of specific cell populations contributing to the striatal system.


Muscarinic Receptor Ibotenic Acid Muscarinic Receptor Subtype Cholinergic Interneuron Quantitative Autoradiography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albin, R.L., Young, A.B., and Penny, J.B., 1989, The functional anatomy of basal ganglia disorders, Trends Neurosci., 12: 366–375.PubMedCrossRefGoogle Scholar
  2. Barnett, A., Iorio, L.C., McQuade, R.D., and Chipkin, R.E., 1986, Pharmacological and behavioral effects of D1 dopamine antagonists, in “Central D1 Dopamine Receptors,” M. Goldstein, K. Fuxe and I. Tabachnick, ed., Plenum Press, New York, pp. 137–144.Google Scholar
  3. Bjorklund, A., Lindvall, 0., Isacson, 0., Brundin, P., Wictorin, K., Strecker, R.E., Clarke, D.J., and Dunnett, S.B., 1987, Mechanisms of action of intracerebral neural implants: studies on nigral and striatal grafts to the lesioned striatum, Trends Neurosci., 10: 509–516CrossRefGoogle Scholar
  4. Bonner, T.I., Buckley, N.J., Yound, A.C., and Brann, M.R., 1987, Identification of a family of muscarinic acetylcholine receptor genes, Science, 237: 527–532.PubMedCrossRefGoogle Scholar
  5. Bounamici, M., Caccia, D., Carpentieri, M., Pegrassi, L., Rossi, A.C., and Di Chiara, G., 1986, D-1 Receptor supersensitivity in the rat striatum after unilateral 6-hydroxydopamine lesions, Eur. J. Pharmacol., 126: 347–348.Google Scholar
  6. Buckley, N.J., Bonner, T.I., and Brann, M.R., 1988, Localization of a family of muscarinic receptor mRNAs in rat brain, J. Neurosci., 8: 4624–4652.Google Scholar
  7. Chen, S.T., Hsu, C.Y., Hogan, E.L., Maricq, H., and Salentine, J.D., 1986, A model of focal ischemic stroke in the rat: Reproducible extensive cortical infarction, Stroke, 17: 738–743.Google Scholar
  8. Chipkin, R.E., Iorio, L.C., Coffin, V.L., McQuade, R.D., Berger, J.G., and Barnett, A., 1988, Pharmacological profile of SCH39166: A dopamine D1 selective benzonaphthazepine with potential antipsychotic activity, J. Pharmacol. Exp. Ther., 247 (3): 1093–1102.PubMedGoogle Scholar
  9. Creese, I., Sibley, D.R., Hamblin, M.W., and Leff, S.E., 1983, The classification of dopamine receptors: Relationship to radioligand binding, Ann. Rev. Neurosci., 6: 43–71.Google Scholar
  10. Dawson, T.M., Gehlert, D.R., McCabe, R.T., Barnett, A., and Wamsley, J.K., 1986, D-1 dopamine receptors in the rat brain: A quantitative autoradiographic analysis, J. Neurosci., 8: 2352–2365.Google Scholar
  11. Dawson, T.M., Gehlert, D.R., and Wamsley, J.K., 1986, Quantitative autoradiographic localization of central dopamine D-1 and D-2 receptors, in: “Neurobiology and Central Dl-Dopamine Receptors,” G.R. Breese and I. Creese, eds., Plenum Press, New York, pp. 93–118.Google Scholar
  12. Dawson, T.M., Gehlert, D.R., Yamamura, H.I., Barnett, A., and Wamsley, J.K., 1985, D-1 dopamine receptors in the rat brain: Autoradiographic localization using [H]SCH23390, Eur. J. Pharmacol., 180: 323–325.Google Scholar
  13. Dawson, V.L., Dawson, T.M., Filloux, F.M., and Wamsley, J.K., 1988, Evidence for dopamine D-2 receptors on cholinergic interneurons in the rat caudate-putamen, Life Sci., 42: 1933–1939.PubMedCrossRefGoogle Scholar
  14. Dawson, V.L., Dawson, T.M., and Wamsley, J.K., 1990, Muscarinic M-2 autoreceptors and postsynaptic D-2 receptors on striatal cholinergic interneurons in the rat brain: An autoradiographic study after intrastriatal injection of the cholinotoxin AF64A, Synapse, [in press].Google Scholar
  15. Delong, M.R. and Georgopoulos, A.P., 1982, Motor functions of the basal ganglia, in: Handbook of Physiology: The Nervous System II, Am. Physiol. Soc., V. B. Brooks Ed., Washington, D.C.Google Scholar
  16. Doods, H.N., Mathy, M.J., Davidesko, D., van Charllorp, K.J., De Jonge, A. and van Zwieten, P.A., 1987, Selectivity of muscarinic antagonists in radioligand and in vivo experiments for the putative M1, M2 and M3 receptors. J. Pharmacol. Exp. Ther., 242: 257–262.Google Scholar
  17. Fage, D., and Scatton, B., 1986, Opposing effects of D-1 and D-2 receptor antagonists on acetylcholine levels in rat striatum, Eur. J. Pharmacol., 129: 359–362.Google Scholar
  18. Filloux, F., Dawson, T.M., and Wamsley, J.K., 1988a, Localization of nigrostriatal dopamine receptor subtypes and adenylate cyclase, Brain Res. Bull., 20: 447–459.Google Scholar
  19. Filloux F., Hunt, M.A., and Wamsley, J.K., 1989, Localization of the dopamine uptake complex using [3H]-[1-(2-benzo(B)thiophenyl) cyclohexyl] piperidine ([3H]BTCP) in rat brain, Neurosci. Lett., 100: 105–110.Google Scholar
  20. Filloux, F., Liu, T.H., Hsu, C.Y., Hunt, M.A., and Wamsley, J.K., 1988, Selective cortical infarction reduces [3H]sulpiride binding in rat caudate-putamen: Autoradiographic evidence for presynaptic D2 receptors on corticostriate terminals, Synapse, 2: 521–531.PubMedCrossRefGoogle Scholar
  21. Filloux, F., Wamsley, J.K., and Dawson, T.M., 1987, Dopamine D-2 auto-and postsynaptic receptors in the nigrostriatal system of the rat brain: localization by quantitative autoradiography with [3H]sulpiride, Eur. J. Pharmacol., 138: 61–68.Google Scholar
  22. Filloux, F., Wamsley, J.K., and Dawson, T.M., 1987, Presynaptic and postsynaptic D-1 dopamine receptors in the nigrostriatal system of the rat brain: A quantitative autoradiographic study using the selective D-1 antagonist [3H]SCH 23390, Brain Res., 408: 205–209.PubMedCrossRefGoogle Scholar
  23. Filloux, F., Hsu, C.Y., Liu, T.H., Hunt, M.A. and Wamsley, J.K., Selective, unilateral cortical infarction increases striatal muscarinic receptor binding: Potential evidence for cortical modulation of intrastriatal cholinergic transmission, J. Chem. Neuroanat., in press.Google Scholar
  24. Gehlert, D.R., Dawson, T.M., Filloux, F.M., Sanna, E., Hanbauer, I., and Wamsley, J.K., 1987, Evidence that [3H]forskolin binding in the substantia nigra is intrinsic to a striatal-nigral projection: An autoradiographic study of rat brain, Neurosci. Lett., 73: 114–118.Google Scholar
  25. Gehlert, D.R., Dawson, T.M., Yamamura, H.I., and Wamsley, J.K., 1985, Quantitative autoradiography of [3H]-forskolin binding sites in the rat brain, Brain Res., 361: 351–360.PubMedCrossRefGoogle Scholar
  26. Gehlert, D.R., Dawson, T.M., Yamamura, H.I., and Wamsley, J.K., 1984, Localization of [3H]-forskolin binding sites in the rat brain using quantitative autoradiography. Eur. J. Pharmacol., 106: 223–225.Google Scholar
  27. Gehlert, D.R., and Wamsley, J.K., 1984, Autoradiographic localization of [3H]sulpiride binding sites in the rat brain, Eur. J. Pharmacol., 98: 311–312.Google Scholar
  28. Gehlert, D.R., and Wamsley, J.K., 1985, Dopamine receptors in the rat brain: Quantitative autoradiographic localization using [3H]sulpiride, Neurochem. Int., 7: 717–723.Google Scholar
  29. Herman, J.P., Choulli, K., Le Moal, M., 1985, Hyper-reactivity to amphetamine in rats with dopaminergic grafts, Exp. Brain Res., 60: 521–526.Google Scholar
  30. Joyce, J.N., and Marshall, J.F., 1987, Quantitative autoradiography of dopamine D2 sites in rat caudate-putamen: Localization to intrinsic neurons and not to neocortical afferents, Neurosci., 20: 773–795.Google Scholar
  31. Joyce, J.N., and Marshall, J.F., 1985, Striatal topography of D-2 receptors correlates with indexes of cholinergic neuron localization, Neurosci. Lett., 53: 127–131.Google Scholar
  32. Kubo, T., Maeda, A., Sugimoto, K., Akiba, I., Mikami, A., Takahashi, H., Mishina, H., Haga, T., Haga, K., Ichiyama, A., Kangawa, K., Kojima, M., Matuso, M., Hirose, T., and Numa, S., 1986, Cloning, sequencing and expression of complementary DNA encoding the muscarinic acetylcholine receptor, Nature, 323: 411–416.PubMedCrossRefGoogle Scholar
  33. Kubota, Y., Inagaki, S., Kito, S., and Wu, J.-Y., 1987, Dopaminergic axons directly make synapses with GABAergic neurons in the rat neostriatum, Brain Res., 406: 147–156.PubMedCrossRefGoogle Scholar
  34. Kubota, Y., Inagaki, S., Shimada, S., Kito, S., Eckenstein, F., and Tohyama, M., 1987, Neostriatal cholinergic neurons receive direct synaptic inputs from dopaminergic axons, Brain Res., 413: 179–184.PubMedCrossRefGoogle Scholar
  35. Kuhar, M.J., DeSouza, E.B., and Unnerstall, J.R., 1986, Neurotransmitter receptor mapping by autoradiography and other methods, Ann Rev. Neurosci., 9: 27–59.Google Scholar
  36. Lehmann, J., and Langer, S.Z., 1983, The striatal cholinergic interneuron: Synaptic target of dopaminergic terminals?, Neurosci., 10: 1105–1120.Google Scholar
  37. McGurk, S.R., Hartgraves, S.L., Kelly, P.H., Gordon, P.H., and Butcher, L.L., 1987, Is ethylcholine mustard aziridinium ion a specific cholinergic neurotoxin, Neurosci., 222: 215–224.CrossRefGoogle Scholar
  38. Mishra, R.K., Gardner, E.L., Katzman, R., and Makman, M.H., 1974, Enhancement of dopamine-stimulated adenylate cyclase activity in rat caudate after lesions in the substantia nigra: Evidence for denervation supersensitivity, Proc. Natl. Acad. Sci. U.S.A., 71: 388–33887.Google Scholar
  39. Porceddu, M.L., Giorgi, 0., Ongini, E., Mele, S., and Biggio, G., 1986, 3H-SCH23390 binding sites in the rat substantia nigra: Evidence for a presynaptic localization and innervation by dopamine, Life Sci., 39: 321–328.Google Scholar
  40. Potter, L.T., Flynn, D.D., Hanchet, H.E., Kalinoski, D.L., Luber-Narod, J., and Mash, D.C., 1984, Independent M1 and M2 receptors, ligands, autoradiography and function, Trends Pharmacol. Sci., Suppl 22–31.Google Scholar
  41. Redmond, Jr., D.E., Naftolin, F., Collier, T.J., Leranth, C., Robbins, R.J., Sladek, C.D., Roth, R.H., and Sladek, Jr., J.R., 1988, Cryopreservation, Culture, and Transplantation of Human Fetal Mesencephalic Tissue into Monkeys, Science, 242: 768–770.Google Scholar
  42. Regenold, W., Araujo, D. and Quirion, R., 1987, Direct visualization of brain M2 muscarinic receptors using the selective antagonist [3H]AFDX116. Eur. J. Pharmacol., 144: 417–419.Google Scholar
  43. Sandberg, K., Hanin, I., Fisher, A., and Coyle, J.T., 1984, Selective cholinergic neurotoxin AF64A’s effects in rat striatum, Brain Res., 293: 49–55.PubMedCrossRefGoogle Scholar
  44. Savasta, M., Dubois, A., Benavides, J., and Scatton, B., 1986, Different neuronal location of [3H]SCH23390 binding sites in pars reticulata and pars compacta of the substantia nigra in the rat, Neurosci. Lett., 72: 265–271.Google Scholar
  45. Scatton, B., 1982, Further evidence for the involvement of D2, but not D1 dopamine receptors in dopaminergic control of striatal cholinergic transmission, Life Sci., 31: 2883–2890.PubMedCrossRefGoogle Scholar
  46. Scheel-Krüger, J., 1986, Dopamine-GABA Interactions: Evidence that GABA transmits, modulates, and mediates dopaminergic functions in the basal ganglia and limbic system, Acta. Neurol. Scand., 73: S107.Google Scholar
  47. Seeman, P., Bzowej, N.H., Guan, H.C., Bergeron, C., Reynolds, G.P., Bird, E.D., Riederer, P., Jellinger, K., and Tourtellotte, W.W., 1987, Human brain D1 and D2 dopamine receptors in schizophrenia, Alzheimer’s, Parkinson’s, and Huntington’s diseases, Neuropsychopharmacol., 1: 5–15.Google Scholar
  48. Trugman, J.M., Geary, II, W.A., and Wooten, G.F., 1986, Localization of D-2 dopamine receptors to intrinsic striatal neurones by quantitative autoradiography, Nature, 323: 267–269.Google Scholar
  49. Vickroy, T.W., Roeske, W.R., Gehlert, D.R., Wamsley, J.K., and Yamamura, H.I., 1985, Quantitative light microscopic autoradiographic of [3H]hemicholinium-3 binding sites in the rat central nervous system: A novel biochemical marker for mapping the distribution of cholinergic nerve terminals, Brain Res., 329: 368–378.Google Scholar
  50. Waddington, J.L., and O’Boyle, K.M., 1989, Drugs acting on brain dopamine receptors: A conceptual reevaluation five years after the first selective D-1 antagonist, Pharmacol. Ther., 43 (1): 1–52.Google Scholar
  51. Walaas, S.I. and Greengard, P., 1984, DARPP-32, A dopamine-and adenosine 3’:5’-Monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions: I. Regional and cellular distribution in the rat brain, J. Neurosci., 4: 84–98.Google Scholar
  52. Wamsley, J.K., Gehlert, D.R., Filloux, F.M., and Dawson, T.M., 1989, Comparison of the density and distribution of D-1 and D-2 dopamine receptors in the rat brain, J. Chem. Neuroanat., 2: 119–137.Google Scholar
  53. Wamsley, J.K., Gehlert, D.R., Roeske, W.R., and Yamamura, H.I., 1984, Muscarinic antagonist binding site heterogeneity as evidenced by autoradiography after direct labeling with [H]-QNB and [3H]pirenzepine, Life Sci., 34: 1395–1402.PubMedCrossRefGoogle Scholar
  54. Wamsley, J.K., Lewis, M.S., Young III, W.S., and Kuhar, M.J., 1981, Autoradiogrpahic localization of muscarinic cholinergic receptors in rat brainstem, J. Neurosci., 1: 176–191.Google Scholar
  55. Wang, J., Roeske, W.R., Hawkins, K.N., Gehlert, D.R., and Yamamura, H.I., 1989, Quantitative autoradiography of M2 muscarinic receptors in the rat brain identified by using a selective radioligand [3H]AF-DX 116, Brain Res., 477: 322–326.PubMedCrossRefGoogle Scholar
  56. Watson, M., Roeske, W.R., Vickroy, T.W., Smith, T.L., Akiyama, K., Guyla, K., Duckles, S.P., Serra, M., Adem, A., Nordberg, A., Gehlert, D.R., Wamsley, J.K., and Yamamura, H.I., 1986, Biochemical and functionalGoogle Scholar
  57. basis of putative muscarinic receptor subtypes and its implications, Trends Pharmacol. Sci., 7:(Supp. II ) 46–55.Google Scholar
  58. Weiner, D.M., and Brann, M.R., 1989, The distribution of a dopamine D2 receptor mRNA in rat brain, FEBS Letters, 253: 207–213.PubMedCrossRefGoogle Scholar
  59. Wong, D.F., Wagner, H.N., Tune, L.E., Dannals, R.F., Pearlson, G.D., Links, J.M., Tamminga, C.A., Broussolle, E.P., Ravert, H.T., Wilson, A.A., Toung, J.K.T., Malat, J., Williams, J.A., O’Tuama, L.A., Snyder, S.H., Kuhar, M.J., and Gjedde, A., 1986, Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics, Science, 234: 1558–1563.PubMedCrossRefGoogle Scholar
  60. Worley, P.F., Baraban, J.M., DeSouza, E.B., and Snyder, S.H., 1986, Mapping second messenger systems in the brain: Differential localizations of adenylate cyclase and protein kinase, C. Proc. Natl. Acad. Sci., 83: 4053–4057.Google Scholar
  61. Yamamura, H.I., Wamsley, J.K., Deshmukh, P., and Roeske, W.R., 1983, Differential light microscopic autoradiographic localization of muscarinic cholinergic receptors in the brainstem and spinal cord of the rat using [3H]-pirenzepine, Eur. J. Pharmacol., 91: 147–149.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • James K. Wamsley
    • 1
  • Mary A. Hunt
    • 1
  1. 1.Neuropsychiatric Research InstituteFargoUSA

Personalised recommendations