In Vivo Development of the Spontaneous Activity of Rat Nigrostriatal Dopaminergic Neurons

  • James M. Tepper
  • Francine Trent
  • Shoji Nakamura
Part of the Advances in Behavioral Biology book series (ABBI, volume 39)


Dopaminergic neurons, along with other monoamine neurons, are known to be among the earliest neurons in the central nervous system to differentiate morphologically and neurochemically, and to send axons to their target regions (Olson and Seiger, 1972; Seiger and Olson, 1973; Voorn et al., 1988). Despite our knowledge of the morphological development of dopaminergic neurons, little is known about the time course of the development of the electrophysiological properties of these neurons. If dopaminergic neurons are physiologically functional early in ontogeny, they may play a role in the development of their target structures, analogous to that shown for noradrenergic neurons in a number of studies (Kasamatsu and Pettigrew, 1976; Pettigrew and Kasamatsu, 1976; Blue and Parnevelas, 1982). Information on the development of dopaminergic neurons in situ may also be relevant to our understanding of the physiological functioning of dopaminergic neurons grafted to the dopamine-denervated striatum. Thus the present experiments were carried out to characterize the developmental profile of the in vivo spontaneous activity of rat nigrostriatal dopaminergic neurons from birth through maturity.


Firing Rate Dopaminergic Neuron Spontaneous Activity Spike Train Firing Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blue, M.E., & Parnavelas, J.G. (1982) The effect of neonatal 6-hydroxydopamine treatment on synaptogenesis in the visual cortex of the rat. J. Comp. Neurol. 205: 199–205.PubMedCrossRefGoogle Scholar
  2. Collingridge, G.L., James, T.A., & MacLeod, N.K. (1980) Antidromic latency variations in nigral compacta neurons. Experientia 36: 970–971.PubMedCrossRefGoogle Scholar
  3. Deniau, J.M., Hammond, C., Riszk, A., & Feger, J. (1978) Electrophysiological properties of identified output neurons of the rat substantia nigra (pars compacta and pars reticulata): Evidence for the existence of branched pathways. Exp. Brain Res. 32: 409–422.PubMedCrossRefGoogle Scholar
  4. Fisher, L.J., Young, S.J., Tepper, J.M., Groves, P.M. & Gage, F.H. (1990) Electrophysiological characteristics of cells within mesencephalon suspension grafts. J. Neurosci. (in press).Google Scholar
  5. Freeman, A.S., Meltzer, L.T., & Bunney, B.S. (1985) Firing properties of substantia nigra dopaminergic neurons in freely moving rats. Life Sci. 36: 1983–1994.PubMedCrossRefGoogle Scholar
  6. Grace, A.A. (1987) The regulation of dopamine neuron activity as determined by in vivo and in vitro intracellular recordings.In L.A. Chiodo and A.S. Freeman (Eds.) Neurophysiology of Dopaminergic Systems–Current Status and Clinical Perspectives, Lakeshore Publishing Co., Grosse Pt., pp. 1–66.Google Scholar
  7. Grace, A.A., & Bunney, B.S. (1983a) Intracellular and extracellular electrophysiology of nigral dopaminergic neurons-1. Identification and characterization. Neuroscience 10: 301–315.PubMedCrossRefGoogle Scholar
  8. Grace, A.A., & Bunney, B.S. (1983b) Intracellular and extracellular electrophysiology of nigral dopaminergic neurons-2. Action potential generating mechanisms and morphological correlates. Neuroscience 10: 317–331.PubMedCrossRefGoogle Scholar
  9. Grace, A.A., & Bunney, B.S. (1983c) Intracellular and extracellular electrophysiology of nigral dopaminergic neurons–3. Evidence for electrotonic coupling. Neuroscience 10: 333–348.PubMedCrossRefGoogle Scholar
  10. Grace, A.A., & Bunney, B.S. (1984) The control of firing pattern in nigral dopamine neurons: Burst firing. J. Neurosci. 4: 2877–2890.PubMedGoogle Scholar
  11. Graybiel, A.M., & Ragsdale, C.W., Jr. (1983) Biochemical anatomy of the striatum. In: P.C. Em-son (Ed.)Chemical Neuroanatomy, Raven Press, New York, pp 427–504.Google Scholar
  12. Guyenet, P.G., & Aghajanian, G.K. (1978) Antidromic identification of dopaminergic and other output neurons of the rat substantia nigra. Brain Res. 150: 69–84.PubMedCrossRefGoogle Scholar
  13. Kasamatsu, T., & Pettigrew, J.D. (1976) Depletion of brain catecholamines: Failure of ocular dominance shift after monocular occlusion in kittens. Science 194: 206–209.PubMedCrossRefGoogle Scholar
  14. Lacey, M.G., Mercuri, N.B., & North, R.A. (1987) Dopamine acts on D2 receptors to increase potassium conductance in neurons of the rat substantia nigra zona compacta. J. Physiol. (Land.) 392: 397–416.Google Scholar
  15. Levine, M.S., Fisher, R.S., Hull, C.D., & Buchwald, N.A. (1982) Development of spontaneous neuronal activity in the caudate nucleus, globus pallidus-entopeduncular nucleus, and substantia nigra of the cat. Dev. Brain Res. 3: 429–441.CrossRefGoogle Scholar
  16. McCormick, D.A., & Prince, D.A. (1987) Post-natal development of electrophysiological properties of rat cerebral cortical pyramidal neurones. J. Physiol. (Lond.) 393: 743–762.Google Scholar
  17. Nakamura, S., Kimura, F., & Sakaguchi, T. (1987) Postnatal development of electrical activity in the locus ceruleus. J. Neurophysiol. 58: 510–524.PubMedGoogle Scholar
  18. Olson, I., & Seiger, A. (1972) Early prenatal ontogeny of central monoamine neurons in the rat: Fluorescence histochemical observations. Z. Anat. Entwickl.-Gesch. 137: 301–316.CrossRefGoogle Scholar
  19. Pettigrew, J.D., & Kasamatsu, T. (1978) Local perfusion of noradrenaline maintains visual cortical plasticity. Nature 271: 761–763.PubMedCrossRefGoogle Scholar
  20. Pitts, D.K., Freeman, A.S., & Chiodo, L.A. (1988) Dopamine neuron ontogeny: Electrophysiological studies. Soc. Neurosci. Abstr. 14: 408.Google Scholar
  21. Seiger, A., & Olson, L. (1973) Late prenatal ontogeny of central monoamine neurons in the rat.Florescence histochemical observations. Z. Anat. Entwickl.-Gesh. 140: 281–318.CrossRefGoogle Scholar
  22. Swann, J.W., Brady, R.J., & Martin, D.L. (1989) Postnatal development of GABA-mediated synaptic inhibition in rat hippocampus. Neuroscience 28: 551–561.PubMedCrossRefGoogle Scholar
  23. Tepper, J.M., Nakamura, S., Young, S.J., & Groves, P.M. (1984) Autoreceptor-mediated changes in dopaminergic terminal excitability: Effects of striatal drug infusions. Brain Res. 309: 317–333.PubMedCrossRefGoogle Scholar
  24. Tepper, J.M., Sawyer, S.F., Young, S.J., & Groves, P.M. (1986) Intracellular recording and HRP staining of rat nigral neurons. Soc. Neurosci. Abstr. 12: 1542.Google Scholar
  25. Tepper, J.M., Trent, F., & Nakamura, S. (1990) Postnatal development of the electrical activity of rat nigrostriatal dopaminergic neurons. Dev. Brain. Res.,in press.Google Scholar
  26. Voorn, P., Kalsbeek, A., Jorritsma-Byham, B., & Groenewegen, H.J. (1988) The pre-and postnatal development of the dopaminergic cell groups in the ventral mesencephalon and the dopaminergic innervation of the striatum of the rat. Neuroscience 25: 857–887.PubMedCrossRefGoogle Scholar
  27. Williams, J.T., & Marshall, K.C. (1987) Membrane properties of adrenergic responses in locus coeruleus neurons of young rats. J. Neurosci. 7: 3687–3694.PubMedGoogle Scholar
  28. Wilson. C.J., Young, S.J., & Groves, P.M. (1977) Statistical properties of neuronal spike trains in the substantia nigra: Cell types and their interactions. Brain Res. 136: 243–260.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • James M. Tepper
    • 1
  • Francine Trent
    • 2
  • Shoji Nakamura
    • 3
  1. 1.Center for Molecular and Behavioral NeuroscienceThe State University of New JerseyNewarkUSA
  2. 2.Department of Biological Sciences, RutgersThe State University of New JerseyNewarkUSA
  3. 3.Kanazawa University Faculty of MedicineKanazawa 920Japan

Personalised recommendations