Dopamine D1 Receptors and Terminal Excitability in the Striatonigral and Nigrostriatal Systems

  • Marco Diana
  • Lawrence J. Ryan
  • Stephen J. Young
  • Philip M. Groves
Part of the Advances in Behavioral Biology book series (ABBI, volume 39)


The terminal excitability method, pioneered by Wall (1958) to investigate the mechanisms of presynaptic inhibition in the spinal cord, is an electrophysiological procedure for observing the consequences of stimulation of receptors on axon terminals in vivo. In this technique, a stimulating electrode is placed in the vicinity of the axon terminal field in order to electrically elicit an antidromic response that is detected with a microelectrode located at the soma. The effects of terminal receptor stimulation or blockade are observed as a change in the threshold current just sufficient to elicit an antidromic response.


Substantia Nigra Axon Terminal Gaba Release Presynaptic Receptor Endogenous Dopamine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aiso M, Potter WZ, Saavedra JM (1987) Axonal transport of dopamine DI receptors in the rat brain. Brain Res 426: 392–396.PubMedCrossRefGoogle Scholar
  2. Altar CA and Hauser K (1987) Topography of substantia nigra innervation by D1 receptors in the rat brain. Brain Res 410: 1–11.PubMedCrossRefGoogle Scholar
  3. Altar CA and Marien MR (1987) Picomolar affinity of [125I]-SCH23982 for D1 receptors in brain demonstrated with digital subtraction autoradiography. J Neurosci 7: 213–222.PubMedGoogle Scholar
  4. Besson M.J., Graybiel A.M. and Nastuk M.A. (1988) [3H]SCH 23390 binding to Dl dopamine receptors in the basal ganglia of the cat and primate: delineation of strisomal compartments and pallidal and nigral subdivision. Neuroscience 26(1): 101–119.Google Scholar
  5. Bolam JP, Somogyi P, Totterdell S, Smith AD (1981) A second type of striatonigral neuron: a comparison between retrogradely labeled and Golgi-stained neurons at the light and electron microscopic levels. Neuroscience 6: 2141–2157.PubMedCrossRefGoogle Scholar
  6. Cheramy A, Nieouillon A, Glowinski J (1978) In vivo changes in dopamine release in cat caudate nucleus and substantia nigra induced by nigral application of various drugs including GABAergic agonists and antagonists. In: Interactions between putative neurotransmitters in the brain, S Garattini, JF Pujol, R Samanin (Eds.), Raven Press: New York, pp. 175–190.Google Scholar
  7. Chevalier G, Vacher S, Deniau JM, Desban M (1985) Disinhibition as a basic process in the expression of striatal functions. 1. The striato-nigral influence on tecto-spinal/tecto-diencephalic neurons. Brain Res 334: 215–226.PubMedCrossRefGoogle Scholar
  8. Diana M., Young S.J. and Groves, P.M. (1989a) Modulation of dopaminergic terminal excitability by Dl selective agents. Neuropharmacology 28 (1): 99–101.PubMedCrossRefGoogle Scholar
  9. Diana M., Garcia-Munoz M., Richards J. and Freed C.R. (1989b) Electrophysiological analysis of dopamine cells from the substantia nigra pars compacta of circling rats. Exptl. Brain Res. 74: 625–630.CrossRefGoogle Scholar
  10. Diana M. Young S.J. and Groves P.M. (1989c) Dopaminergic terminal excitability: neuropharmacological evidence for a DI autoreceptor. Neuroscience (submitted).Google Scholar
  11. Di Chiara G, Porceddu ML, Morelli M, Mulas ML, Gessa GL (1979) Evidence for a GABAergic projection from the substantia nigra to the ventromedial thalamus and to the superior colliculus of the rat. Brain Res 176: 273–284.PubMedCrossRefGoogle Scholar
  12. Filloux F.M. Wamsley J.K. and Dawson T.M. (1987) Dopamine D-2 auto-and postsynaptc receptors in the nigrostriatal system of the rat brain: localization by quantitative autoradiography with [3H]sulpiride. Eur. J of Pharmacol. 138: 61–68.CrossRefGoogle Scholar
  13. Freeman A.S., Meltzer L.T. and Bunney B.S. (1985). Firing properties of substantia nigra dopaminergic neurons in freely moving rats. Life Sci 36: 1983–1994.PubMedCrossRefGoogle Scholar
  14. Garcia-Munoz, M. Patino, P., Chavez-Noriega, L. Arbuthnott, G. and Ryman, A. (1987) Dopamine control of excitability changes in nigrostriatal terminals. In The Basal Ganglia II (eds Carpenter, M.B. and Jayaraman, A. ) pp. 149–155. Plenum Press, New York.CrossRefGoogle Scholar
  15. Gariano, R.F., Sawyer, S.F., Tepper, J.M., Young, S.J., and Groves, P.M. Mesocortical Dopaminergic Neurons: Electrophysiological consequences of terminal receptor activation. Brain Res Bul 22: 517–523. CrossRefGoogle Scholar
  16. Gerfen CR (1985) The neostriatal mosaic. I. Compartmental organization of projections from the striatum to the substantia nigra in the rat. J Comp Neurol 236: 454–476.PubMedCrossRefGoogle Scholar
  17. Gerfen C.R., Herkenham M. and Thibault J. (1987a) The neostriatal mosaic: II. Patch-and matrix-directed mesostriatal dopaminergic and non-dopaminergic systems. J. of Neurosci. 7: 3915–3934.Google Scholar
  18. Gerfen C.R., Baimbridge K.G. and Thibault J. (1987b) The neostriatal mosaic: III. Biochemical and developmental dissociation of patch-matrix mesostriatal systems. J. of Neurosci. 7: 3935–3944.Google Scholar
  19. Graybiel AM and Ragsdale CW (1983) Biochemical anatomy of the striatum. In: Chemical Neuroanatomy, PC Emson (Ed.), Raven Press: New York, pp. 427–503.Google Scholar
  20. Groves, P.M., Fenster, G.A., Tepper, J.M., Nakamura, S. and Young, S.J. (1981) Changes in dopaminergic terminal excitability induced by amphetamine and haloperidol. Brain Res. 221: 425–431.PubMedCrossRefGoogle Scholar
  21. Hyttel J. (1983) SCH 23390- the first selective dopamine D-1 antagonist. Eur. J. Pharmacol. 91: 153–154.PubMedCrossRefGoogle Scholar
  22. Imperato A., Mulas A. and Di Chiara G. (1987) The D-1 antagonist SCH 23390 stimulates while the D-1 agonist SKF 38393 fails to affect dopamine release in the dorsal caudate of freely moving rats. Eur. J. of Pharmacol. 142: 177–181.CrossRefGoogle Scholar
  23. Imperato A. and Di Chiara G. (1988) Effects of locally applied D-1 and D-2 receptor agonists and antagonists studied with brain dialysis. Eur. J. of Pharmacol. 156: 385–393.CrossRefGoogle Scholar
  24. Iorio L.C., Barnett A., Leitz F.H., Houser V.P. and Korduba C.A. (1983) SCH 23390, a potential benzazepine antipsychotic with unique interactions on dopaminergic systems. J. Pharmacol. exp. Ther. 226: 462–468.PubMedGoogle Scholar
  25. Kalivas P.W., Bourdelais A., Abhold R and Abbott L. (1989) Somatodendritic release of endogenous dopamine: in vivo dialysis in the A10 region. Neurosci. Lett. 100: 215–220.PubMedCrossRefGoogle Scholar
  26. Lehmann J., Briley M. and Langer S.Z. (1983) Characterization of dopamine autoreceptor and [3f1] spiperone binding sites in vitro with classical and novel dopamine receptor agonists. Eur. J. Pharmacol. 88: 11–26.PubMedCrossRefGoogle Scholar
  27. Mereu, G.P., Westfall, T.C. and Wang, R.Y. (1985) Modulation of terminal excitability of mesolimbic dopaminergic neurons by d_amphetamine and haloperidol. Brain Res. 359: 88–96.PubMedCrossRefGoogle Scholar
  28. Morelli M., Mennini T. and Di Chiara G. (1988) Nigral dopamine autoreceptors are exclusively of the D2 type: quantitative autoradiography of [125 I) iodosulpiride and [1251] SCH 23390 in adjacent brain sections. Neuroscience 27: 865–870.PubMedCrossRefGoogle Scholar
  29. Murrin L.C. and Zeng W. (1989) Dopamine Dl receptor development in the rat striatum: early localization in striosomes. Brain Res. 480: 170–177.PubMedCrossRefGoogle Scholar
  30. Nakamura, S., Tepper, J.M., Young, S.J. and Groves, P.M. (1982) Changes in noradrenergic terminal excitability induced by amphetamine and their relation to impulse traffic. Neuroscience 7 (9): 2217–2224.PubMedCrossRefGoogle Scholar
  31. Paden C, Wilson CJ, Groves PM (1976) Amphetamine-induced release of dopamine from the substantia nigra in vitro. Life Sci 19: 1499–1506.PubMedCrossRefGoogle Scholar
  32. Porceddu M.L., Giorgi O., De Montis G., Mele S., Cocco L., Ongini E. & Biggio G. (1987) 6Hydroxydopamine-induced degeneration of nigral dopamine neurons: differential effect on nigral and striatal D-1 receptors. Life Sci. 41: 697–706. PubMedCrossRefGoogle Scholar
  33. Reubi J-C, Iversen LL, Jessell TM (1977) Dopamine selectively increases 3HGABA release from slices of rat substantia nigra in vitro. Nature 268: 652–654.PubMedCrossRefGoogle Scholar
  34. Ryan, L.J. Tepper, S.F., Young, S.J., & Groves P.M. (1985) Amphetamine’s effects on terminal excitability of noradrenergic locus coeruleus neurons are impulse dependent at low but not high doses. Brain Res 341: 155–163.PubMedCrossRefGoogle Scholar
  35. Ryan, L.J., Diana, M., Young, S.J. and Groves, P.M. (1989) Dopamine Dl heteroceptors on striatonigral axon terminals are not stimulated by endogenous dopamine either tonically or after amphetamine: evidence from terminal excitability. Exptl. Brain Res. 77: 161–165.CrossRefGoogle Scholar
  36. Ryan LJ, Young SJ, Segal DS, Groves PM (1989) Antidromically identified striatonigral projection neurons in the chronically implanted behaving rat: relations of cell firing to amphetamine-induced behaviors. Behavioral Neuroscience 103: 3–14.PubMedCrossRefGoogle Scholar
  37. Savasta, M., Dubois, A., Benavides, J. and Scatton, B. (1986) Different neuronal location of [3H]SCH 23390 binding sites in pars reticulata and pars compacta of the substantia nigral in the rat. Neurosci Lett 72: 265–271.PubMedCrossRefGoogle Scholar
  38. Savasta M, Dubois A, Feuerstein C, Benavides J, Scatton B (1987) Localization of D1 dopamine receptors in the rat brain by quantitative autoradiography: effect of dopaminergic denervation. Biogenic Amines 4: 419–429.Google Scholar
  39. Setler P., Sarau H., Zerkle C.L., Saunders H.L. (1978) The central effect of a novel dopamine agonist. Eur. J. of Pharmacol. 50: 413–440.CrossRefGoogle Scholar
  40. Spano P.F., Trabucchi M., Di Chiara G. (1977) Localization of nigral dopamine-sensitive adenylate-cyclase on neurons originating from corpus striatum. Science 196: 1343–1345.PubMedCrossRefGoogle Scholar
  41. Starr M (1987) Opposing roles of dopamine D1 and D2. receptors in nigral [3H] gamma-aminobutyric acid release? J Neurochem 49: 1042–1049.PubMedCrossRefGoogle Scholar
  42. Sawyer, S. F., Tepper, J.M., Young, S.J. and Groves, P.M. (1985) Activation of dorsal raphe neurons from neostriatum: physiological characterization and the effects of terminal autoreceptor activation. Brain Res: 332: 15–28.PubMedCrossRefGoogle Scholar
  43. Tepper, J.M., Young, S.J. and Groves, P.M. (1984a) Autoreceptor mediated changes in dopaminergic terminal excitability: effects of increase in impulse flow. Brain Res. 309: 309–316.PubMedCrossRefGoogle Scholar
  44. Tepper, J.M., Young, S.J. and Groves, P.M. (1984b) Autoreceptor mediated changes in dopaminergic terminal excitability: effects of striatal drug infusions. Brain Res. 309: 317–333.PubMedCrossRefGoogle Scholar
  45. Wall, P.D. (1958) Excitability changes in afferent fibre terminations and their relation to slow potentials. J. Physiol. 142: 1–21.PubMedGoogle Scholar
  46. Waszczak BL and Martin L (1989) Striatonigral lesions and intranigral injection of receptor inactivator EEDQ prevent D-1 agonist effects on substantia nigra pars reticulata (SNpr) neurons. Soc Neurosci Abs 15: 428.Google Scholar
  47. Zettestrom T., Sharp T. and Ungersted U. (1986) Effect of dopamine D-1 and D-2 receptor selective drugs on dopamine release and metabolism in rat striatum in vivo. Naunyn-Schmiedeberg’s Arch. Pharmacol. 334: 117–124.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Marco Diana
    • 1
  • Lawrence J. Ryan
    • 2
  • Stephen J. Young
    • 3
  • Philip M. Groves
    • 3
  1. 1.Dipartimento di NeuroscienzeUniversita’ di CagliariCagliariItaly
  2. 2.Dept. of PsychologyOregon State UniversityCorvallisUSA
  3. 3.Dept. of Psychiatry and NeuroscienceUniversity of California San DiegoLa JollaUSA

Personalised recommendations