Advertisement

Dye-Coupling in the Neostriatum of the Rat

  • Carlos Cepeda
  • John P. Walsh
  • Chester D. Hull
  • Nathaniel A. Buchwald
  • Michael S. Levine
Part of the Advances in Behavioral Biology book series (ABBI, volume 39)

Abstract

Morphologically, gap junctions are intermembranous channels between cells thought to mediate electrotonic transmission and to serve as a passage for small molecules in the CNS (for a review see Sotelo and Korn, 1978). After the discovery that the fluorescent dye Lucifer yellow crosses gap junctions to label adjacent cells (Stewart, 1978), dye-coupling was used as indirect evidence for the presence of gap junctions. Dye-coupling occurs in several neural areas, including the hippocampus (Knowles et el., 1982; MacVicar et al., 1982), the neocortex (Connors et al., 1983; Gutnick and Prince, 1981) and the hypothalamus (Andrew et al., 1981; Hatton et al., 1987). In parallel ultrastructural studies, gap junctions have been shown to be present in some of these structures (Sloper and Powell, 1978; Sotelo and Korn, 1978).

Keywords

Horizontal Cell Dopamine Concentration Lucifer Yellow Postnatal Development Electrolytic Lesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adinolfi, A.M., 1977, The postnatal development of the caudate nucleus: a Golgi and electron microscopic study of kittens, Brain Res., 133: 251 – 266. PubMedCrossRefGoogle Scholar
  2. Andrew, R.D., MacVicar, B.A., Dudek, F.E. and Hatton, G.I., 1981, Dye transfer through gap junctions between neuroendocrine cells of rat hypothalamus, Science, 211: 1187 – 1189. PubMedCrossRefGoogle Scholar
  3. Baker, R. and Minds, R., 1971, Electrotonic coupling between neurons in the rat mesencephalic nucleus, J. Physiol. (Lond)., 212:45–63.Google Scholar
  4. Baux, G., Simonneau, M., Tauc, L. and Segundo, J.P., 1978, Uncoupling of electrotonic synapses by calcium. Proc. Natl. Acad. Sci. USA, 75: 4577 – 4581. PubMedCrossRefGoogle Scholar
  5. Bennett, M.V.L., Spray, D.C. and Harris, A.L., 1981, Electrical coupling in development, Amer. Zool., 21: 413 – 427. Google Scholar
  6. Bennett, M.V.L., Verselis, V., White, R.L. and Spray, D.C., 1988, Gap Junctional Conductance: Gating. In: Modern Cell Biology. Vol. 7. Gap Junctions. E.L. Hertzberg and R.G. Johnson (eds.) A.R. Liss, Inc. New York, pp 287 – 304.Google Scholar
  7. Bolam, J.P., Powell, J.F., Totterdell, S. and Smith, A.D., 1981, The proportion of neurons in the rat neostriatum that project to the substantia nigra demonstrated using horseradish peroxidase conjugated with wheat-germ agglutinin, Brain Res., 220: 339 – 343.PubMedCrossRefGoogle Scholar
  8. Brown, M.C. and Hardman, V.J., 1987, Plasticity of vertebrate motoneurons. In: Growth and plasticity of neural connections. W. Winlow and C.R. McCrohan (eds.). Manchester University Press, pp. 36 – 55. Google Scholar
  9. Caveney, S., 1985, The role of gap junctions in development, Ann. Rev. Physiol., 47: 319 – 335. CrossRefGoogle Scholar
  10. Connors, B.W., Benardo, L.S. and Prince, D.A., 1983, Coupling between neurons of the developing rat neocortex, J. Neurosci., 3: 773 – 782. PubMedGoogle Scholar
  11. Das, G.D., 1977, Membrane-fusions and cytoplasmic bridges in the cells of the developing cerebellum, Cell Tiss. Res., 176: 475 – 492. CrossRefGoogle Scholar
  12. Dowling, J.E., 1986, Dopamine: a retina neuromodulator? TINS. 9: 236 – 240. Google Scholar
  13. Dudek, F.E., Andrew, R.D., MacVicar, B.A., Snow, R.W. and Taylor, C.P. 1983, Recent evidence for and possible significance of gap junctions and electrotonic synapses in the mammalian brain. In H.H. Jasper and N.M. vanGelder (Eds.), Basic mechanisms of neuronal hyper-excitability, Alan R. Liss, New York, pp. 31 – 73.Google Scholar
  14. Fisher, R.S., Levine, M.S., Adinolfi, A.M., Hull, C.D. and Buchwald, N.A., 1987, The morphogenesis of glutamic acid decarboxylase in the neostriatum of the cat: neuronal and ultrastructural localization, Brain Res., 33: 215 – 234.CrossRefGoogle Scholar
  15. Galarraga, E., Bargas, J. Martinez-Fong, D. and Aceves, J., 1987, Spontaneous synaptic potentials in dopamine-denervated neostriatal neurons, Neurosci. Lett., 81: 351 – 355.PubMedCrossRefGoogle Scholar
  16. Gutnick, M.J. and Prince, D.A., 1981, Dye coupling and possible electrotonic coupling in the guinea pig neocortical slice, Science, 211: 67 – 70.PubMedCrossRefGoogle Scholar
  17. Gutnick, M.J., Lobel-Yaakov, R. and Rimon, G., 1985, Incidence of neuronal dye-coupling in neocortical slices depends on the plane of section, Neurosci., 15: 659 – 666.CrossRefGoogle Scholar
  18. Hatton, G.I., Yang, Q.Z. and Cobbett, P., 1987, Dye coupling among immunocytochemically identified neurons in the supraoptic nucleus: Increased incidence in lactating rats, Neurosci. 21: 923 – 930.CrossRefGoogle Scholar
  19. Haynes, L.W., Smyth, D.C. and Zakarian, S., 1982, Immunocytochemical localization of lipotropin C-fragment (B-endorphin) in the developing rat spinal cord, Brain Res., 232: 115 – 128.PubMedCrossRefGoogle Scholar
  20. Hornykiewicz, 0., 1982, Brain neurotransmitter changes in Parkinson's disease. In: Marsden, C.D and Fahn, S. (eds.), Movement disorders, Butterworth Scientific, London, pp. 41 – 58.Google Scholar
  21. Knowles, W.D., Funch, P.G. and Schwartzkroin, P.A., 1982, Electrotonic and dye coupling in hippocampal CA1 pyramidal cells in vitro, Neurosci., 7: 1713 – 1722.CrossRefGoogle Scholar
  22. Lasater, E.M., 1987, Retinal horizontal cell gap junctional conductance is modulated by dopamine through a cyclic AMP-dependent protein kinase, Proc. Natl. Acad. Sci. USA, 84: 7319 – 7323.PubMedCrossRefGoogle Scholar
  23. Lasater, E.M. and Dowling, J.E., 1985, Dopamine decreases conductance of the electrical junctions between cultured retinal horizontal cells, Proc. Natl. Acad. Sci., 82: 3025 – 3029.PubMedCrossRefGoogle Scholar
  24. Levine, M.S., Fisher, R.S., Hull, C.D. and Buchwald, N.A., 1986, Postnatal development of identified medium-sized caudate spiny neurons in the cat, Dev. Brain Res., 24: 47 – 62.CrossRefGoogle Scholar
  25. Llinâs, R.R., 1985, Electrotonic transmission in the mammalian central nervous system. In: Gap Junctions. Eds. M.V.L. Bennett and D.C. Spray, Cold Spring Harbor Laboratory, pp. 337 – 353.Google Scholar
  26. MacVicar, B.A., Ropert, N. and Krnjevic, K., 1982, Dye-coupling between pyramidal cells of rat hippocampus in vivo, Brain. Res., 238: 239 – 244.PubMedCrossRefGoogle Scholar
  27. Mangel, S.C., and Dowling, J.E., 1985, Responsiveness and receptive field size of carp horizontal cells are reduced by prolonged darkness and dopamine, Science, 29: 1107 – 1109.CrossRefGoogle Scholar
  28. Morris, R., Levine, M.S., Cherubini, E., Buchwald, N.A. and Hull, C.D. 1979, Intracellular analysis of the development of responses of caudate neurons to stimulation of cortex, thalamus and substantia nigra in the kitten, Brain Res., 173: 471 – 487.PubMedCrossRefGoogle Scholar
  29. Murphy, A.D., Hadley, R.D. and Kater, S.B., 1983, Axotomy-induced parallel increases in electrical and dye coupling between identified neurons of Helisoma, J. Neurosci., 3: 1422 – 1429.PubMedGoogle Scholar
  30. Pannese, E., Luciano, L. and Reale, E., 1978, Intercellular junctions in developing spinal ganglion, Zool., 6: 129 – 138.Google Scholar
  31. Piccolino, M., Neyton, J. and Gerschenfeld, H.M., 1984, Decrease of gap junction permeability induced by dopamine and cyclic adenosine 3', 5'-monophosphate in horizontal cells of turtle retina, J. Neurosci., 4: 2477 – 2488.PubMedGoogle Scholar
  32. Rao, G., Barnes, C.A. and McNaughton, B.L., 1987, Occlusion of hippocampal electrical junctions by intracellular calcium injection, Brain. Res., 408: 267 – 270.PubMedCrossRefGoogle Scholar
  33. Ramoa, A.S., Campbell, G. and Shatz, C.J., 1988, Dendritic growth and remodeling of cat retinal ganglion cells during fetal and postnatal development, J. Neurosci., 8: 4239 – 4261.PubMedGoogle Scholar
  34. Rogawski, M.A., 1987, New directions in neurotransmitter action: Dopamine provides some important clues, TINS., 10: 200 – 205.Google Scholar
  35. Santiago, M., Cano, J., Machado, A. and Reinoso-Suarez, F., 1987, Postnatal development in the monoamine content in the striatum of the rat, Biogenic Amines. 4: 381 – 389.Google Scholar
  36. Sloper, J.J. and Powell, T.P.S., 1978, Gap junctions between dendrites and somata of neurons in the primate sensorimotor cortex, Proc. R. Soc. Lond. fBioll., 203: 39 – 47.CrossRefGoogle Scholar
  37. Sotelo, C. and Korn, H., 1978, Morphological correlates of electrical and other interactions through low-resistance pathways between neurons of the vertebrate central nervous system, Int. Rev. Cytol., 55: 67 – 107.PubMedCrossRefGoogle Scholar
  38. Spray, D.C., Harris, A.L. and Bennett, M.V.L., 1979, Voltage dependence of junctional conductance in early amphibian embryos, Science, 204: 432 – 434.PubMedCrossRefGoogle Scholar
  39. Stewart, W.W., 1978, Functional connections between cells as revealed by dye-coupling with a highly fluorescent naphthalimide tracer, Cell, 14: 741 – 759.PubMedCrossRefGoogle Scholar
  40. Taylor, C.P. and Dudek, F.E., 1982, A physiological test for electrotonic coupling between CA1 pyramidal cells in rat hippocampal slices, Brain Res., 235: 351 – 357.PubMedCrossRefGoogle Scholar
  41. Tennyson, V.M., Barrett, R.E., Cohen, G., Cote, L., Heikkila, R. and Mytilineou, C., 1972, The developing neostriatum of the rabbit: Correlation of fluorescence histochemistry, electron microscopy, endogenous dopamine levels, and [3H] dopamine uptake, Brain Res., 46: 251 – 285.PubMedCrossRefGoogle Scholar
  42. Teranishi, T., Negishi, K. and Kato, S., 1983, Dopamine modulates S-potential amplitude and dye-coupling between external horizontal cells in carp retina, Nature, 301: 243 – 246.PubMedCrossRefGoogle Scholar
  43. Teranishi, T., Negishi, K. and Kato, S., 1984, Regulatory effect of dopamine on spatial properties of horizontal cells in carp retina, J. Neurosci., 4: 1271 – 1280.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Carlos Cepeda
    • 1
  • John P. Walsh
    • 1
  • Chester D. Hull
    • 1
  • Nathaniel A. Buchwald
    • 1
  • Michael S. Levine
    • 1
  1. 1.Mental Retardation Research CenterUniversity of CaliforniaLos AngelesUSA

Personalised recommendations