The Ultrastructural Chemoanatomy of the Basal Ganglia: 1984–1989. II. The Pallidum, Substantia Nigra and Subthalamic Nucleus

  • Pedro Pasik
  • Tauba Pasik
  • Gay R. Holstein
Part of the Advances in Behavioral Biology book series (ABBI, volume 39)


The previous chapter covered our survey of the literature on the neostriatum. The present one completes the review of the other components of the basal ganglia system. A list of abbreviations can be found at the beginning of the preceding article.


Tyrosine Hydroxylase Substantia Nigra Cholinergic Neuron Subthalamic Nucleus Asymmetric Synapse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aoki, C., and Pickel, V.M., 1988, Neuropeptide Y-containing neurons in the rat striatum: ultrastructure and cellular relations with tyrosine hydroxylase-containing terminals and with astrocytes, Brain Res, 459: 205–225.PubMedCrossRefGoogle Scholar
  2. Aronin, N., Chase, K., and DiFiglia, M., 1986, Glutamic acid decarboxylase and enkephalin immunoreactive axon terminals in the rat neostriatum synapse with striatonigral neurons, Brain Res., 365: 151–158.PubMedCrossRefGoogle Scholar
  3. Barrington-Ward, S.J., Kilpatrick, I.C., Phillipson, O.T., and Pycock, C.J., 1984, Evidence that thalamic efferent neurones are non-cholinergic: a study in the rat with special reference to the thalamostriatal pathway, Brain Reste, 299: 146–151.CrossRefGoogle Scholar
  4. Beal, M.F., Frank, R.C., Ellison, D.W., and Martin, J.B., 1986, The effect of neuropeptide Y in striatal catecholamines, Neurosci. Lett., 71:118–125.Google Scholar
  5. Beninato, M., and Spencer, R.F., 1987, A cholinergic projection to the rat substantia nigra from the pedunculopontine tegmental nucleus, Brain Res., 412: 169–174.PubMedCrossRefGoogle Scholar
  6. Bolam, J.P., Ingham, C.A., Izzo, P.N., Levey, A.I., Rye, D.B., Smith, A.D., and Wainer, B.H., 1986, Substance P-containing terminals in synaptic contact with cholinergic neurons in the neostriatum and basal forebrain: a double immunocytochemical study in the rat, Brain Rem, 397:279–289.Google Scholar
  7. Bolam, J.P., and Izzo, P.N., 1988, The postsynaptic targets of substance Pimmunoreactive terminals in the rat neostriatum with particular reference to identified spiny striatonigral neurons, Exp. Brain Rea, 70: 361–377.Google Scholar
  8. Bolam, J.P., Wainer, B.H., and Smith, A.D., 1984, Characterization of cholinergic neurons in the rat neostriatum. A combination of choline acetyltransferase immunocytochemistry, Golgi impregnation and electron microscopy, Neuroscience, 12: 711–718.PubMedCrossRefGoogle Scholar
  9. Bolam, J.P., Powell, J.F., Wu, J.-Y., and Smith, A.D., 1985, Glutamate decarboxylase-immunoreactive structures in the rat neostriatum: A correlated light and electron microscopic study including a combination of Golgi impregnation with immunocytochemistry, J. Comp. Neurol., 237: 1–20.PubMedCrossRefGoogle Scholar
  10. Bourrat, F., and Sotelo, C., 1983, Postnatal development of the olivary complex in the rat. I. An electron microscopic study of the medial accessory olive, Develop Brain Res, 8: 291–310.CrossRefGoogle Scholar
  11. Cepeda, C., Walsh, J.P., Hull, C.D., Howard, S.G., Buchwald, N.A., and Levine, M.S., 1989, Dye-coupling in the neostriatum of the rat: I. Modulation by dopamine depleting lesions, Synao, 4: 229–237.CrossRefGoogle Scholar
  12. Chang, H.T., and Luo, H., 1989, Calcitonin gene-related peptide (CGRP) in the rat substantia innominata and globus pallidus: a light and electron microscopic immuncytochemical study, Brain Res., 495: 167–172.PubMedCrossRefGoogle Scholar
  13. Chesselet, M.-F., and Graybiel, A.M., 1986, Striatal neurons expressing somatostatin-like immunoreactivity: Evidence for a peptidergic interneuronal system in the cat, Neuroscienm, 17: 547–571.CrossRefGoogle Scholar
  14. Chesselet, M.-F., Weiss, L., Wuenschell, C., Tobin, A.J., and Affolter, H.-U., 1987, Comparative distribution of mRNAs for glutamic acid decarboxylase, tyrosine hydroxylase, and tachynins in the basal ganglia: an in situ hybridization study in the rodent brain, J. Comb. Neurol., 262: 125–140.CrossRefGoogle Scholar
  15. Clarke, P.B.S., Homer, D.W., Pert, A., and Skirboll, L.R., 1987, Innervation of substantia nigra neurons by cholinergic afferents from pedunculopontine nucleus in the rat: neuroanatomical and electrophysiological evidence, Neuroscience, 23: 1011–1019.PubMedCrossRefGoogle Scholar
  16. Covenas, R., Romo, R., Cheramy, A., Cesselin, F., and Conrath, M., 1986, Immunocytochemical study of enkephalin-like cell bodies in the thalamus of the cat, Brain Res., 377: 355–361.PubMedCrossRefGoogle Scholar
  17. Deutch, A.Y., and Roth, R.H., 1987, Calcitonin gene-related peptide in the ventral tegmental area: selective modulation of prefronatl cortical dopamine metabolism, Neurosci. Lett., 74: 169–174.PubMedCrossRefGoogle Scholar
  18. DiFiglia, M., 1987, Synaptic organization of cholinergic neurons in the monkey neostriatum, J. Comp. Neurol., 255: 245–258.PubMedCrossRefGoogle Scholar
  19. DiFiglia, M., and Aronin, N., 1984, Quantitative electron microscopic study of immunoreactive somatostatin axons in the rat neostriatum, Neurosci. Lett., 50: 325–331.PubMedCrossRefGoogle Scholar
  20. DiFiglia, M., Christakos, S., and Aronin, N., 1989, Ultrastructural localization of immunoreactive calbindin-D28k in the rat and monkey basal ganglia, including subcellular distribution with colloidal gold labeling, J. Como. Neural., 279: 653–665.CrossRefGoogle Scholar
  21. DiFiglia, M., Pasik, T., and Pasik, P., 1980, Ultrastructure of Golgi impregnated and gold-toned spiny and aspiny neurons in the monkey neostriatum, J. Neurocytol., 9: 471–492.PubMedCrossRefGoogle Scholar
  22. Dimova, R.V., and Usunoff, G., 1989, Cortical projection of giant neostriatal neurons in the cat. Light and electron microscopic horseradish peroxidase study, Brain Res. Bull., 22: 489–499.PubMedCrossRefGoogle Scholar
  23. Doucet, G., Descarries, L., and Garcia, S., 1986, Quantification of the dopamine innervation in adult rat neostriatum, Neuroscience, 2: 427–445CrossRefGoogle Scholar
  24. Dubach, M., Schmidt, R., Kunkel, D., Bowden, D.M., Martin, R., and German, D.C., 1987, Primate neostriatal neurons containing tyrosine hydroxylase: immunohistochemical evidence, Neurosai. Lett., 75:205–210.Google Scholar
  25. Freund, T.F., Powell, J.F., and Smith, A.D., 1984, Tyrosine hydroxylaseimmunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines, Neuroscience, 13: 1189–1215.PubMedCrossRefGoogle Scholar
  26. Gerfen, C.R., Baimbridge, K.G., and Miller, J.J., 1985, The neostriatal mosaic: compartmental distribution of calcium-binding protein and parvalbumin in the basal ganglia of the rat and monkey, Froc. Natl. Acad. Sci. USA, 82: 8780–8784.CrossRefGoogle Scholar
  27. Gould, E., and Butcher, L.L., 1986, Cholinergic neurons in the rat substantia nigra, Neurosci Lett., 63: 315–319.PubMedCrossRefGoogle Scholar
  28. Henderson, Z., and Greenfield, S.A., 1987, Does the substantia nigra have a cholinergic innervation?, Neurosci. Lett., 23:109–113.Google Scholar
  29. Hökfelt, T., Everitt, H.J., Theodorsson-Norheim, E., and Goldstein, M., 1984, Occurrence of neurotensinlike immunoreactivity in subpopulations of hypothalamic, mesencephalic, and medullary catecholamine neurons, J. Co p. Neurol., 222: 543–559.CrossRefGoogle Scholar
  30. Hökfelt, T., Skirboll, L., Rehfeld, M.F., Goldstein, M., Markey, K., and Dann, O., 1980, A subpopulation of mesencephalic dopamine neurons projecting to limbic areas contains a cholecystokinin-like peptide. Evidence from immunohistochemistry combined with retrograde tracing, Neuroscience, 5: 2093–2124.PubMedCrossRefGoogle Scholar
  31. Holstein, G.R., and Pasik, P., 1987, Synaptology of immunocytochemicallyidentified GABAergic and enkephalinergic terminals in monkey substantia nigra, Soc. Neurosci. Ahstr., 13: 28.Google Scholar
  32. Holstein, G.R., Pasik, P., and Hamori, J., 1986, Synapses between GABAimmunoreactive axonal and dendritic elements in monkey substantia nigra, Neurosci. Lett., 66: 316–322.PubMedCrossRefGoogle Scholar
  33. Ingham, C.A., Bolam, J.P., and Smith, A.D., 1988, GABA-immunoreactive synaptic boutons in the rat basal forebrain: comparison of neurons that project to the neocortex with pallidosubthalamic neurons, Comp. Neurol., 273: 263–282.CrossRefGoogle Scholar
  34. Izzo, P.N., and Bolam, J.P., 1988, Cholinergic synaptic input to different parts of spiny striatonigral neurons in the rat, J. Comp. Neurol. 269: 219–234.PubMedCrossRefGoogle Scholar
  35. Izzo, P.N., Graybiel, A.M., and Bolam, J.P., 1987, Characterization of substance P- and [Met]enkephalin-immunoreactive neurons in the caudate nucleus of cat and ferret by a single section Golgi procedure, Neuroscience, 20: 577–582.PubMedCrossRefGoogle Scholar
  36. Kita, H., and Kitai, S.T., 1987, Efferent projections of the subthalamic nucleus in the rat: light and electron microscopic analysis with the PHA-L method, J. Comp. Neurol., 260: 435–452.PubMedCrossRefGoogle Scholar
  37. Kitai, S.T., and Kita, H., 1987, Anatomy and physiology of the subthalamic nucleus: a driving force of the basal ganglia, in: “The Basal Ganglia II. Structure and Function-Current Concepts,” M.B. Carpenter and A. Jayaraman, eds., Adv. Behay. Biol., 32: 357–373, Plenum Press, New York.Google Scholar
  38. Kerkerian, L., Bosler, O., and Pelletier, G., 1986, Striatal neuropeptide Y neurons are under the influence of the nigrostriatal dopaminergic pathway: immunohistochemical evidence, Neurosci. Lett., 66: 106–112.PubMedCrossRefGoogle Scholar
  39. Kowall, N.W., Ferrante, R.J., Beal, M.F., Richardson Jr., E.P., Sofroniew, M.V., Cuello, A.C., and Martin, J.B., 1987, Neuropeptide Y, somatostatin, and reduced nicotinamide adenine dinucleotide phospate diaphorase in the human striatum: a combined immunocytochemical and enzyme histochemical study, Neuroscience, 20: 817–828.PubMedCrossRefGoogle Scholar
  40. Kubota, Y., Inagaki, S., and Kito, S., 1986a, Innervation of substance P neurons by catecholaminergic terminals in the neostriatum, Brain Res., 375:163–167.Google Scholar
  41. Kubota, Y., Inagaki, S., Kito, S., Takagi, H., and Smith, A.D., 1986b, Ultrastructural evidence of dopaminergic input to enkephalinergic neurons in rat neostriatum, Brain Res., 367: 374–378.PubMedCrossRefGoogle Scholar
  42. Kubota, Y., Inagaki, S., Kito, S., and Wu, J.-Y., 1987a, Dopaminergic axons directly make synapses with GABAergic neurons in the rat neostriatum, Brain Res, 406: 147–156.PubMedCrossRefGoogle Scholar
  43. Kubota, Y., Inagaki, S., Shimada, S.., Kito, S., Eckenstein, F., and Tohyama, M., 1987b, Neostriatal cholinergic neurons receive direct synaptic inputs from dopaminergic axons, Brain Res., 413: 179–184.PubMedCrossRefGoogle Scholar
  44. Kubota, Y., Inagaki, S., Kito, S., Shimada, S., Okayama, T., Hatanaka, H., and Pelletier, G., 1988, Neuropeptide Y-immunoreactive neurons receive synaptic inputs from dopaminergic axon terminals in the rat neostriatum, Brain Res, 458: 389–393.PubMedCrossRefGoogle Scholar
  45. Le Greves, P., Nyberg, F., Terenius, L., and Hökfelt, T., 1985, Calcitonin gene-related peptide is a potent inhibitor of substance P degradation, Bur. J. Pharmacol., 115: 309–311.CrossRefGoogle Scholar
  46. Magistretti, P.J., Morrison, J.H., Shoemaker, W.J., Sapin, V., and Bloom, F.E., 1981, Vasoactive intestinal polypeptide induces glycogenolysis in mouse cortical slices: A possible regulatory mechanism for the local control of energy metabolism, Proc Ntl. Acad. Sci. USA, 78:6535–6539.Google Scholar
  47. Martínez-Murillo, R., Villalba, R., Montero-Caballero, M.I., and Rodrigo, J., 1989a, Cholinergic somata and terminals in the rat substantia nigra: an immunocytochemical study with optical and electron microscopic techniques, J. Comp. Neurol., 281: 397–415.PubMedCrossRefGoogle Scholar
  48. Martínez-Murillo, R., Villalba, R.M., and Rodrigo, J., 1989b, Electron microscopic localization of cholinergic terminals in the rat substantia nigra: an immunocytochemical study, Neurosci. Lett., 96:121–126.Google Scholar
  49. Mugnaini, E., and Oertel, W.H., 1985, An atlas of the distribution of GABAergic neurons in the rat CNS as revealed by GAD immunohistochemistry, in: “Handbook of Chemical Neuroanatomy: GABA and Neuropeptides in the CNS,” A. Björklund and T. Hökfelt, eds., Elsevier, Amsterdam, pp. 436–608.Google Scholar
  50. Nieoullon, A., 1986, Reply to the letter to the editor by Kilpatrick and Phillipson, Neurosci. Lett., 67: 98–99.CrossRefGoogle Scholar
  51. Nieoullon, A., Scarfone, E., Kerkerian, L., Errami, M., and Dusticier, N., 1985, Changes in choline acetyltransferase, glutamic acid decarboxylase, high-affinity glutamate uptake and dopaminergic activity induced by kainic acid lesion of the thalamostriatal neurons, Neurosci Lett., 58: 299–304.PubMedCrossRefGoogle Scholar
  52. Nitsch, C., and Riesenberg, R., 1988, Immunocytochemical demonstration of GABAergic synaptic connections in rat substantia nigra after different lesions of the striatonigral projection, Brain Res, 461: 127–142.PubMedCrossRefGoogle Scholar
  53. Ohno, Y., Sasa, M, and Takaori, S., 1987, Coexistence of inhibitory dopamine D-1 and excitatory D-2 receptors on the same caudate nucleus neurons, Life Sri., 40: 1937–1945.CrossRefGoogle Scholar
  54. Okayama, T., Kubota, Y., Kito, S., Funaki, H., Shimada, S., Takagi, H., and Inagaki, S., 1989, A light and electron microscopic study of calcitonin gene-related peptide,in the rat caudate putamen, Brain Res. Bull., 22: 657–663.PubMedCrossRefGoogle Scholar
  55. Pasik, P., Pasik, T., and DiFiglia, M. , 1979, The internal organization of the neostriatum in mammals, in: The Neostriatum, I. Divac and R.G.E. Oberg, eds., Pergamon Press, Oxford, pp. 5–36.Google Scholar
  56. Pasik, P., Pasik, T., Hâmori, J., and Holstein, G.R., 1986, Light and electron microscopic visualization of GABAergic elements in the monkey brain by means of a direct GABA antibody, in: “GABA in Endocrine Function,” G. Racagni and A.O. Donoso, eds., Adv. Biochem. Psychopharmacol., 42: 13–24, Raven Press, New York.Google Scholar
  57. Pasik, P., Pasik, T., and Holstein, G.R., 1986, Ultrastructural chemoanatomy of the basal ganglia: an overview, in: “Parkinson’s Disease,” M.D. Yahr and K.J. Bergmann, eds., Adv. Neurol., 45: 59–66, Raven Press, New York.Google Scholar
  58. Pasik, P., Pasik, T., Holstein, G.R., and Hamori, J., 1988, GABAergic elements in the neuronal circuits of the monkey neostriatum: a light and electron microscopic immunocytochemical study, J. Comp. Neurol., 270: 157–170.PubMedCrossRefGoogle Scholar
  59. Pasik, P., Pasik, T., Holstein, G.R., and Pecci Saavedra, J., 1984, Serotoninergic innervation of the monkey basal ganglia: ar immunocytochemical, light and electron microscopic study, in: “The Basal Ganglia. Structure and Function,” J. McKenzie, R.E. Kemm and L.N. Wilcock, eds., Adv. Behay. Biol., 27: 115–129, Plenum Press, New York.CrossRefGoogle Scholar
  60. Pasik, T., and Pasik, P., 1982, Serotoninergic afferents in monkey neostriatum, Acta Biol. Acad. Sci. Hung., 33: 277–288.PubMedGoogle Scholar
  61. Penny, G.R., Afsharpour, S., and Kitai, S.T., 1986, The glutamate decarboxylase-, leucine enkephalin-, methionine enkephalin-and substance P-immunoreactive neurons in the neostriatum of the rat and cat: evidence for partial population overlap, Neuroscience, 17: 1011–1045.PubMedCrossRefGoogle Scholar
  62. Phelps, P.E., Houser, C.R., and Vaughn, J.E., 1985, Immunocytochemical localization of choline acetyltransferase within the rat neostriatum: a correlated light and electron microscopic study of cholinergic neurons and synapses, J. Comp. Neurol., 238: 286–307.PubMedCrossRefGoogle Scholar
  63. Pickel, V.M., Beckley, S.C., Joh, T.H., and Reis, D.J., 1981, Ultrastructural immunocytochemical localization of tyrosine hydroxylase in neostriatum, Brain Res., 225: 373–385.PubMedCrossRefGoogle Scholar
  64. Ramón y Cajal, S., 1911, “Histologie du Système Nerveux de l’Homme et des Vertébrés, Vol. 2, Maloine, Paris, pp. 504–518.Google Scholar
  65. Ribak, C.E., Vaughn, J.E., Saito, K., Barber, R., and Roberts, E., 1976, Immunocytochemical localization of glutamate decarboxylase in rat substantia nigra, Brain Res., 116: 287–298.PubMedCrossRefGoogle Scholar
  66. Smith, Y., and Bolam, J.P., 1989, Neurons of the substantia nigra reticulata receive a dense GABA-containing input from the globus pallidus in the rat, Brain Rea., 493: 160–167.CrossRefGoogle Scholar
  67. Smith, Y., and Parent, A., 1986, Neuropeptide Y-immunoreactive neurons in the striatum of cat and monkey: morphological characteristics, intrinsic organization and co-localization with somatostatin, Brain Res., 372: 241–252.PubMedCrossRefGoogle Scholar
  68. Smith, Y., and Parent, A., 1988, Neurons of the subthalamic nucleus in primates display glutamate but not GABA immunoreactivity, Brain Rea., 453: 353–356.CrossRefGoogle Scholar
  69. Smith, Y, Parent, A., Seguela, P., and Descarries, L., 1987, Distribution of GABA-immunoreactive neurons in the basal ganglia of the squirrel monkey (Saimiri sciureus), J. Comp. Neurol., 259: 50–61.PubMedCrossRefGoogle Scholar
  70. Soghomonian, J.-J., Descarries, L., and Watkins, K.C., 1989, Serotonin innervation in adult rat neostriatum. II. Ultrastructural features: a radioautographic and immunocytochemical study, Brain Res, 481: 67–86.PubMedCrossRefGoogle Scholar
  71. Sotelo, C., and Korn, H., 1977, Morphological correlates of electrical and other interactions through low-resistance pathways between neurons of the vertebrate central nervous system, Int. Rev. Cytol., 55: 67–107.CrossRefGoogle Scholar
  72. Steinbusch, H.W.M., Sauren, Y., Groenewegen, H., Watanabe, T., and Mulder, A.H., 1986, Histaminergic projections from the premammillary and posterior hypothalamic region to the caudate-putamen complex in the rat, Brain Res., 368: 389–393.PubMedCrossRefGoogle Scholar
  73. Sugimoto, T., Itoh, K., Yasui, Y., Kaneko, T., and Mizuno, N., 1985, Coexistence of neuropeptides in projection neurons of the thalamus in the cat, Brain Res., 347: 381–384.PubMedCrossRefGoogle Scholar
  74. Sugimoto, T., and Mizuno, N., 1987, Neurotensin in projection neurons of the striatum and nucleus accumbens, with reference to coexistence with enkephalin and GABA: an immunohistochemical study in the cat, J. Comp Neurol., 257: 383–395.PubMedCrossRefGoogle Scholar
  75. Sugimoto, T., Takada, M., Kaneko, T., and Mizuno, N., 1984, Substance P-positive thalamocaudate neurons in the center median-parafascicular complex in the cat, Brain Res., 323: 181–184.PubMedCrossRefGoogle Scholar
  76. Takada, M., and Hattori, T., 1987, Glycine: an alternative transmitter candidate of the pallidosubthalamic projection neurons in the rat, I Comp. Neurol., 262: 165–172.Google Scholar
  77. Takagi, H., Mizuta, H., Matsuda, T., Inagaki, S., Tateishi, K., and Hamaoka, T., 1984, The occurrence of cholecystokinin-like immunoreactive neurons in the rat neostriatum: light and electron microscopic analysis, Brain Res., 309: 346–349.PubMedCrossRefGoogle Scholar
  78. Teranishi, T., Negishi, K., and Kato, S., 1983, Dopamine modulates S-potential amplitude and dye-coupling between external horizontal cells in carp retina, Nature, 301: 243–246.PubMedCrossRefGoogle Scholar
  79. Theriault, E., and Landis, D.M.D., 1987, Morphology of striatal neurons containing VIP-like immunoreactivity, J. Comp. Neurol., 256: 1–13.PubMedCrossRefGoogle Scholar
  80. van den Pol, A.N., Smith, A.D., and Powell, J.F, 1985, GABA axons in synaptic contact with dopamine neurons in the substantia nigra: double immunocytochemistry with biotin-peroxidase and protein A-colloidal gold, Brain Res., 348: 146–15.PubMedCrossRefGoogle Scholar
  81. Vincent, S.R., and Johansson, O., 1983, Striatal neurons containing both somatostatin and avian pancreatic polypeptide (APP)-like immunoreactivities and NADPH-diaphorase activity: A light and electron microscopic study, J Comp Neurol, 217: 264–270.PubMedCrossRefGoogle Scholar
  82. Vuillet, J., Kerkerian, L., Kachidian, P., Bosler, O., and Nieoullon, A., 1989a, Ultrastructural correlates of functional relationships between nigral dopaminergic or cortical afferent fibers and neuropeptide Y-containing neurons in the rat striatum, Neurosci Lett., 100: 99–104.PubMedCrossRefGoogle Scholar
  83. Vuillet, J., Kerkerian, L., Salin, P., and Nieoullon, A., 1989b, Ultrastructural features of NPY-containing neurons in the rat striatum, Brain Res., 477: 241–251.PubMedCrossRefGoogle Scholar
  84. Wainer, B.H., Levey, A.I., Mufson, E.J., and Mesulam, M.-M., 1984, Cholinergic systems in mammalian brain identified with antibodies against choline acetyltransferase, Neurochem Int, 6: 163–182.PubMedCrossRefGoogle Scholar
  85. Walaas, S.I., Jahn, R., and Greengard, P., 1988, Quantitation of nerve terminal populations: synaptic vesicle-associated proteins as markers for synaptic density in the rat neostriatum, Bynapse, 2: 516–520.CrossRefGoogle Scholar
  86. Walsh, J.P., Cepeda, C., Hull, C.D., Fisher, R.S., Levine, M.S., and Buchwald, N.A., 1989, Dye-coupling in the neostriatum of the rat: II. Decreased coupling between neurons during development, Synapse, 4: 238–247.Google Scholar
  87. Woolf, N.J., and Butcher, L.L., 1986, Cholinergic systems in the rat brain: III. Projections from the pontomesencephalic tegmentum to the thalamus, tectum, basal ganglia, and basal forebrain, Brain Res. Bull., 16: 603–637.PubMedCrossRefGoogle Scholar
  88. Woulfe, J., and Beaudet, A., 1989, Immunocytochemical evidence for direct connections between neurotensin-containing axons and dopaminergic neurons on the rat midbrain tegmentum, Brain Res 479: 402–406.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Pedro Pasik
    • 1
    • 2
  • Tauba Pasik
    • 1
  • Gay R. Holstein
    • 1
    • 2
  1. 1.Departments of NeurologyMount Sinai School of Medicine, CUNYNew YorkUSA
  2. 2.Cell Biology-AnatomyMount Sinai School of Medicine, CUNYNew YorkUSA

Personalised recommendations