Skip to main content

The Ultrastructural Chemoanatomy of the Basal Ganglia: 1984–1989. II. The Pallidum, Substantia Nigra and Subthalamic Nucleus

  • Chapter
The Basal Ganglia III

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 39))

  • 158 Accesses

Abstract

The previous chapter covered our survey of the literature on the neostriatum. The present one completes the review of the other components of the basal ganglia system. A list of abbreviations can be found at the beginning of the preceding article.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aoki, C., and Pickel, V.M., 1988, Neuropeptide Y-containing neurons in the rat striatum: ultrastructure and cellular relations with tyrosine hydroxylase-containing terminals and with astrocytes, Brain Res, 459: 205–225.

    Article  PubMed  CAS  Google Scholar 

  • Aronin, N., Chase, K., and DiFiglia, M., 1986, Glutamic acid decarboxylase and enkephalin immunoreactive axon terminals in the rat neostriatum synapse with striatonigral neurons, Brain Res., 365: 151–158.

    Article  PubMed  CAS  Google Scholar 

  • Barrington-Ward, S.J., Kilpatrick, I.C., Phillipson, O.T., and Pycock, C.J., 1984, Evidence that thalamic efferent neurones are non-cholinergic: a study in the rat with special reference to the thalamostriatal pathway, Brain Reste, 299: 146–151.

    Article  CAS  Google Scholar 

  • Beal, M.F., Frank, R.C., Ellison, D.W., and Martin, J.B., 1986, The effect of neuropeptide Y in striatal catecholamines, Neurosci. Lett., 71:118–125.

    Google Scholar 

  • Beninato, M., and Spencer, R.F., 1987, A cholinergic projection to the rat substantia nigra from the pedunculopontine tegmental nucleus, Brain Res., 412: 169–174.

    Article  PubMed  CAS  Google Scholar 

  • Bolam, J.P., Ingham, C.A., Izzo, P.N., Levey, A.I., Rye, D.B., Smith, A.D., and Wainer, B.H., 1986, Substance P-containing terminals in synaptic contact with cholinergic neurons in the neostriatum and basal forebrain: a double immunocytochemical study in the rat, Brain Rem, 397:279–289.

    Google Scholar 

  • Bolam, J.P., and Izzo, P.N., 1988, The postsynaptic targets of substance Pimmunoreactive terminals in the rat neostriatum with particular reference to identified spiny striatonigral neurons, Exp. Brain Rea, 70: 361–377.

    CAS  Google Scholar 

  • Bolam, J.P., Wainer, B.H., and Smith, A.D., 1984, Characterization of cholinergic neurons in the rat neostriatum. A combination of choline acetyltransferase immunocytochemistry, Golgi impregnation and electron microscopy, Neuroscience, 12: 711–718.

    Article  PubMed  CAS  Google Scholar 

  • Bolam, J.P., Powell, J.F., Wu, J.-Y., and Smith, A.D., 1985, Glutamate decarboxylase-immunoreactive structures in the rat neostriatum: A correlated light and electron microscopic study including a combination of Golgi impregnation with immunocytochemistry, J. Comp. Neurol., 237: 1–20.

    Article  PubMed  CAS  Google Scholar 

  • Bourrat, F., and Sotelo, C., 1983, Postnatal development of the olivary complex in the rat. I. An electron microscopic study of the medial accessory olive, Develop Brain Res, 8: 291–310.

    Article  Google Scholar 

  • Cepeda, C., Walsh, J.P., Hull, C.D., Howard, S.G., Buchwald, N.A., and Levine, M.S., 1989, Dye-coupling in the neostriatum of the rat: I. Modulation by dopamine depleting lesions, Synao, 4: 229–237.

    Article  CAS  Google Scholar 

  • Chang, H.T., and Luo, H., 1989, Calcitonin gene-related peptide (CGRP) in the rat substantia innominata and globus pallidus: a light and electron microscopic immuncytochemical study, Brain Res., 495: 167–172.

    Article  PubMed  CAS  Google Scholar 

  • Chesselet, M.-F., and Graybiel, A.M., 1986, Striatal neurons expressing somatostatin-like immunoreactivity: Evidence for a peptidergic interneuronal system in the cat, Neuroscienm, 17: 547–571.

    Article  CAS  Google Scholar 

  • Chesselet, M.-F., Weiss, L., Wuenschell, C., Tobin, A.J., and Affolter, H.-U., 1987, Comparative distribution of mRNAs for glutamic acid decarboxylase, tyrosine hydroxylase, and tachynins in the basal ganglia: an in situ hybridization study in the rodent brain, J. Comb. Neurol., 262: 125–140.

    Article  CAS  Google Scholar 

  • Clarke, P.B.S., Homer, D.W., Pert, A., and Skirboll, L.R., 1987, Innervation of substantia nigra neurons by cholinergic afferents from pedunculopontine nucleus in the rat: neuroanatomical and electrophysiological evidence, Neuroscience, 23: 1011–1019.

    Article  PubMed  CAS  Google Scholar 

  • Covenas, R., Romo, R., Cheramy, A., Cesselin, F., and Conrath, M., 1986, Immunocytochemical study of enkephalin-like cell bodies in the thalamus of the cat, Brain Res., 377: 355–361.

    Article  PubMed  CAS  Google Scholar 

  • Deutch, A.Y., and Roth, R.H., 1987, Calcitonin gene-related peptide in the ventral tegmental area: selective modulation of prefronatl cortical dopamine metabolism, Neurosci. Lett., 74: 169–174.

    Article  PubMed  CAS  Google Scholar 

  • DiFiglia, M., 1987, Synaptic organization of cholinergic neurons in the monkey neostriatum, J. Comp. Neurol., 255: 245–258.

    Article  PubMed  CAS  Google Scholar 

  • DiFiglia, M., and Aronin, N., 1984, Quantitative electron microscopic study of immunoreactive somatostatin axons in the rat neostriatum, Neurosci. Lett., 50: 325–331.

    Article  PubMed  CAS  Google Scholar 

  • DiFiglia, M., Christakos, S., and Aronin, N., 1989, Ultrastructural localization of immunoreactive calbindin-D28k in the rat and monkey basal ganglia, including subcellular distribution with colloidal gold labeling, J. Como. Neural., 279: 653–665.

    Article  CAS  Google Scholar 

  • DiFiglia, M., Pasik, T., and Pasik, P., 1980, Ultrastructure of Golgi impregnated and gold-toned spiny and aspiny neurons in the monkey neostriatum, J. Neurocytol., 9: 471–492.

    Article  PubMed  CAS  Google Scholar 

  • Dimova, R.V., and Usunoff, G., 1989, Cortical projection of giant neostriatal neurons in the cat. Light and electron microscopic horseradish peroxidase study, Brain Res. Bull., 22: 489–499.

    Article  PubMed  CAS  Google Scholar 

  • Doucet, G., Descarries, L., and Garcia, S., 1986, Quantification of the dopamine innervation in adult rat neostriatum, Neuroscience, 2: 427–445

    Article  Google Scholar 

  • Dubach, M., Schmidt, R., Kunkel, D., Bowden, D.M., Martin, R., and German, D.C., 1987, Primate neostriatal neurons containing tyrosine hydroxylase: immunohistochemical evidence, Neurosai. Lett., 75:205–210.

    Google Scholar 

  • Freund, T.F., Powell, J.F., and Smith, A.D., 1984, Tyrosine hydroxylaseimmunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines, Neuroscience, 13: 1189–1215.

    Article  PubMed  CAS  Google Scholar 

  • Gerfen, C.R., Baimbridge, K.G., and Miller, J.J., 1985, The neostriatal mosaic: compartmental distribution of calcium-binding protein and parvalbumin in the basal ganglia of the rat and monkey, Froc. Natl. Acad. Sci. USA, 82: 8780–8784.

    Article  CAS  Google Scholar 

  • Gould, E., and Butcher, L.L., 1986, Cholinergic neurons in the rat substantia nigra, Neurosci Lett., 63: 315–319.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, Z., and Greenfield, S.A., 1987, Does the substantia nigra have a cholinergic innervation?, Neurosci. Lett., 23:109–113.

    Google Scholar 

  • Hökfelt, T., Everitt, H.J., Theodorsson-Norheim, E., and Goldstein, M., 1984, Occurrence of neurotensinlike immunoreactivity in subpopulations of hypothalamic, mesencephalic, and medullary catecholamine neurons, J. Co p. Neurol., 222: 543–559.

    Article  Google Scholar 

  • Hökfelt, T., Skirboll, L., Rehfeld, M.F., Goldstein, M., Markey, K., and Dann, O., 1980, A subpopulation of mesencephalic dopamine neurons projecting to limbic areas contains a cholecystokinin-like peptide. Evidence from immunohistochemistry combined with retrograde tracing, Neuroscience, 5: 2093–2124.

    Article  PubMed  Google Scholar 

  • Holstein, G.R., and Pasik, P., 1987, Synaptology of immunocytochemicallyidentified GABAergic and enkephalinergic terminals in monkey substantia nigra, Soc. Neurosci. Ahstr., 13: 28.

    Google Scholar 

  • Holstein, G.R., Pasik, P., and Hamori, J., 1986, Synapses between GABAimmunoreactive axonal and dendritic elements in monkey substantia nigra, Neurosci. Lett., 66: 316–322.

    Article  PubMed  CAS  Google Scholar 

  • Ingham, C.A., Bolam, J.P., and Smith, A.D., 1988, GABA-immunoreactive synaptic boutons in the rat basal forebrain: comparison of neurons that project to the neocortex with pallidosubthalamic neurons, Comp. Neurol., 273: 263–282.

    Article  CAS  Google Scholar 

  • Izzo, P.N., and Bolam, J.P., 1988, Cholinergic synaptic input to different parts of spiny striatonigral neurons in the rat, J. Comp. Neurol. 269: 219–234.

    Article  PubMed  CAS  Google Scholar 

  • Izzo, P.N., Graybiel, A.M., and Bolam, J.P., 1987, Characterization of substance P- and [Met]enkephalin-immunoreactive neurons in the caudate nucleus of cat and ferret by a single section Golgi procedure, Neuroscience, 20: 577–582.

    Article  PubMed  CAS  Google Scholar 

  • Kita, H., and Kitai, S.T., 1987, Efferent projections of the subthalamic nucleus in the rat: light and electron microscopic analysis with the PHA-L method, J. Comp. Neurol., 260: 435–452.

    Article  PubMed  CAS  Google Scholar 

  • Kitai, S.T., and Kita, H., 1987, Anatomy and physiology of the subthalamic nucleus: a driving force of the basal ganglia, in: “The Basal Ganglia II. Structure and Function-Current Concepts,” M.B. Carpenter and A. Jayaraman, eds., Adv. Behay. Biol., 32: 357–373, Plenum Press, New York.

    Google Scholar 

  • Kerkerian, L., Bosler, O., and Pelletier, G., 1986, Striatal neuropeptide Y neurons are under the influence of the nigrostriatal dopaminergic pathway: immunohistochemical evidence, Neurosci. Lett., 66: 106–112.

    Article  PubMed  CAS  Google Scholar 

  • Kowall, N.W., Ferrante, R.J., Beal, M.F., Richardson Jr., E.P., Sofroniew, M.V., Cuello, A.C., and Martin, J.B., 1987, Neuropeptide Y, somatostatin, and reduced nicotinamide adenine dinucleotide phospate diaphorase in the human striatum: a combined immunocytochemical and enzyme histochemical study, Neuroscience, 20: 817–828.

    Article  PubMed  CAS  Google Scholar 

  • Kubota, Y., Inagaki, S., and Kito, S., 1986a, Innervation of substance P neurons by catecholaminergic terminals in the neostriatum, Brain Res., 375:163–167.

    Google Scholar 

  • Kubota, Y., Inagaki, S., Kito, S., Takagi, H., and Smith, A.D., 1986b, Ultrastructural evidence of dopaminergic input to enkephalinergic neurons in rat neostriatum, Brain Res., 367: 374–378.

    Article  PubMed  CAS  Google Scholar 

  • Kubota, Y., Inagaki, S., Kito, S., and Wu, J.-Y., 1987a, Dopaminergic axons directly make synapses with GABAergic neurons in the rat neostriatum, Brain Res, 406: 147–156.

    Article  PubMed  CAS  Google Scholar 

  • Kubota, Y., Inagaki, S., Shimada, S.., Kito, S., Eckenstein, F., and Tohyama, M., 1987b, Neostriatal cholinergic neurons receive direct synaptic inputs from dopaminergic axons, Brain Res., 413: 179–184.

    Article  PubMed  CAS  Google Scholar 

  • Kubota, Y., Inagaki, S., Kito, S., Shimada, S., Okayama, T., Hatanaka, H., and Pelletier, G., 1988, Neuropeptide Y-immunoreactive neurons receive synaptic inputs from dopaminergic axon terminals in the rat neostriatum, Brain Res, 458: 389–393.

    Article  PubMed  CAS  Google Scholar 

  • Le Greves, P., Nyberg, F., Terenius, L., and Hökfelt, T., 1985, Calcitonin gene-related peptide is a potent inhibitor of substance P degradation, Bur. J. Pharmacol., 115: 309–311.

    Article  Google Scholar 

  • Magistretti, P.J., Morrison, J.H., Shoemaker, W.J., Sapin, V., and Bloom, F.E., 1981, Vasoactive intestinal polypeptide induces glycogenolysis in mouse cortical slices: A possible regulatory mechanism for the local control of energy metabolism, Proc Ntl. Acad. Sci. USA, 78:6535–6539.

    Google Scholar 

  • Martínez-Murillo, R., Villalba, R., Montero-Caballero, M.I., and Rodrigo, J., 1989a, Cholinergic somata and terminals in the rat substantia nigra: an immunocytochemical study with optical and electron microscopic techniques, J. Comp. Neurol., 281: 397–415.

    Article  PubMed  Google Scholar 

  • Martínez-Murillo, R., Villalba, R.M., and Rodrigo, J., 1989b, Electron microscopic localization of cholinergic terminals in the rat substantia nigra: an immunocytochemical study, Neurosci. Lett., 96:121–126.

    Google Scholar 

  • Mugnaini, E., and Oertel, W.H., 1985, An atlas of the distribution of GABAergic neurons in the rat CNS as revealed by GAD immunohistochemistry, in: “Handbook of Chemical Neuroanatomy: GABA and Neuropeptides in the CNS,” A. Björklund and T. Hökfelt, eds., Elsevier, Amsterdam, pp. 436–608.

    Google Scholar 

  • Nieoullon, A., 1986, Reply to the letter to the editor by Kilpatrick and Phillipson, Neurosci. Lett., 67: 98–99.

    Article  CAS  Google Scholar 

  • Nieoullon, A., Scarfone, E., Kerkerian, L., Errami, M., and Dusticier, N., 1985, Changes in choline acetyltransferase, glutamic acid decarboxylase, high-affinity glutamate uptake and dopaminergic activity induced by kainic acid lesion of the thalamostriatal neurons, Neurosci Lett., 58: 299–304.

    Article  PubMed  CAS  Google Scholar 

  • Nitsch, C., and Riesenberg, R., 1988, Immunocytochemical demonstration of GABAergic synaptic connections in rat substantia nigra after different lesions of the striatonigral projection, Brain Res, 461: 127–142.

    Article  PubMed  CAS  Google Scholar 

  • Ohno, Y., Sasa, M, and Takaori, S., 1987, Coexistence of inhibitory dopamine D-1 and excitatory D-2 receptors on the same caudate nucleus neurons, Life Sri., 40: 1937–1945.

    Article  CAS  Google Scholar 

  • Okayama, T., Kubota, Y., Kito, S., Funaki, H., Shimada, S., Takagi, H., and Inagaki, S., 1989, A light and electron microscopic study of calcitonin gene-related peptide,in the rat caudate putamen, Brain Res. Bull., 22: 657–663.

    Article  PubMed  CAS  Google Scholar 

  • Pasik, P., Pasik, T., and DiFiglia, M. , 1979, The internal organization of the neostriatum in mammals, in: The Neostriatum, I. Divac and R.G.E. Oberg, eds., Pergamon Press, Oxford, pp. 5–36.

    Google Scholar 

  • Pasik, P., Pasik, T., Hâmori, J., and Holstein, G.R., 1986, Light and electron microscopic visualization of GABAergic elements in the monkey brain by means of a direct GABA antibody, in: “GABA in Endocrine Function,” G. Racagni and A.O. Donoso, eds., Adv. Biochem. Psychopharmacol., 42: 13–24, Raven Press, New York.

    Google Scholar 

  • Pasik, P., Pasik, T., and Holstein, G.R., 1986, Ultrastructural chemoanatomy of the basal ganglia: an overview, in: “Parkinson’s Disease,” M.D. Yahr and K.J. Bergmann, eds., Adv. Neurol., 45: 59–66, Raven Press, New York.

    Google Scholar 

  • Pasik, P., Pasik, T., Holstein, G.R., and Hamori, J., 1988, GABAergic elements in the neuronal circuits of the monkey neostriatum: a light and electron microscopic immunocytochemical study, J. Comp. Neurol., 270: 157–170.

    Article  PubMed  CAS  Google Scholar 

  • Pasik, P., Pasik, T., Holstein, G.R., and Pecci Saavedra, J., 1984, Serotoninergic innervation of the monkey basal ganglia: ar immunocytochemical, light and electron microscopic study, in: “The Basal Ganglia. Structure and Function,” J. McKenzie, R.E. Kemm and L.N. Wilcock, eds., Adv. Behay. Biol., 27: 115–129, Plenum Press, New York.

    Chapter  Google Scholar 

  • Pasik, T., and Pasik, P., 1982, Serotoninergic afferents in monkey neostriatum, Acta Biol. Acad. Sci. Hung., 33: 277–288.

    PubMed  CAS  Google Scholar 

  • Penny, G.R., Afsharpour, S., and Kitai, S.T., 1986, The glutamate decarboxylase-, leucine enkephalin-, methionine enkephalin-and substance P-immunoreactive neurons in the neostriatum of the rat and cat: evidence for partial population overlap, Neuroscience, 17: 1011–1045.

    Article  PubMed  CAS  Google Scholar 

  • Phelps, P.E., Houser, C.R., and Vaughn, J.E., 1985, Immunocytochemical localization of choline acetyltransferase within the rat neostriatum: a correlated light and electron microscopic study of cholinergic neurons and synapses, J. Comp. Neurol., 238: 286–307.

    Article  PubMed  CAS  Google Scholar 

  • Pickel, V.M., Beckley, S.C., Joh, T.H., and Reis, D.J., 1981, Ultrastructural immunocytochemical localization of tyrosine hydroxylase in neostriatum, Brain Res., 225: 373–385.

    Article  PubMed  CAS  Google Scholar 

  • Ramón y Cajal, S., 1911, “Histologie du Système Nerveux de l’Homme et des Vertébrés, Vol. 2, Maloine, Paris, pp. 504–518.

    Google Scholar 

  • Ribak, C.E., Vaughn, J.E., Saito, K., Barber, R., and Roberts, E., 1976, Immunocytochemical localization of glutamate decarboxylase in rat substantia nigra, Brain Res., 116: 287–298.

    Article  PubMed  CAS  Google Scholar 

  • Smith, Y., and Bolam, J.P., 1989, Neurons of the substantia nigra reticulata receive a dense GABA-containing input from the globus pallidus in the rat, Brain Rea., 493: 160–167.

    Article  CAS  Google Scholar 

  • Smith, Y., and Parent, A., 1986, Neuropeptide Y-immunoreactive neurons in the striatum of cat and monkey: morphological characteristics, intrinsic organization and co-localization with somatostatin, Brain Res., 372: 241–252.

    Article  PubMed  CAS  Google Scholar 

  • Smith, Y., and Parent, A., 1988, Neurons of the subthalamic nucleus in primates display glutamate but not GABA immunoreactivity, Brain Rea., 453: 353–356.

    Article  CAS  Google Scholar 

  • Smith, Y, Parent, A., Seguela, P., and Descarries, L., 1987, Distribution of GABA-immunoreactive neurons in the basal ganglia of the squirrel monkey (Saimiri sciureus), J. Comp. Neurol., 259: 50–61.

    Article  PubMed  CAS  Google Scholar 

  • Soghomonian, J.-J., Descarries, L., and Watkins, K.C., 1989, Serotonin innervation in adult rat neostriatum. II. Ultrastructural features: a radioautographic and immunocytochemical study, Brain Res, 481: 67–86.

    Article  PubMed  CAS  Google Scholar 

  • Sotelo, C., and Korn, H., 1977, Morphological correlates of electrical and other interactions through low-resistance pathways between neurons of the vertebrate central nervous system, Int. Rev. Cytol., 55: 67–107.

    Article  Google Scholar 

  • Steinbusch, H.W.M., Sauren, Y., Groenewegen, H., Watanabe, T., and Mulder, A.H., 1986, Histaminergic projections from the premammillary and posterior hypothalamic region to the caudate-putamen complex in the rat, Brain Res., 368: 389–393.

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto, T., Itoh, K., Yasui, Y., Kaneko, T., and Mizuno, N., 1985, Coexistence of neuropeptides in projection neurons of the thalamus in the cat, Brain Res., 347: 381–384.

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto, T., and Mizuno, N., 1987, Neurotensin in projection neurons of the striatum and nucleus accumbens, with reference to coexistence with enkephalin and GABA: an immunohistochemical study in the cat, J. Comp Neurol., 257: 383–395.

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto, T., Takada, M., Kaneko, T., and Mizuno, N., 1984, Substance P-positive thalamocaudate neurons in the center median-parafascicular complex in the cat, Brain Res., 323: 181–184.

    Article  PubMed  CAS  Google Scholar 

  • Takada, M., and Hattori, T., 1987, Glycine: an alternative transmitter candidate of the pallidosubthalamic projection neurons in the rat, I Comp. Neurol., 262: 165–172.

    Google Scholar 

  • Takagi, H., Mizuta, H., Matsuda, T., Inagaki, S., Tateishi, K., and Hamaoka, T., 1984, The occurrence of cholecystokinin-like immunoreactive neurons in the rat neostriatum: light and electron microscopic analysis, Brain Res., 309: 346–349.

    Article  PubMed  CAS  Google Scholar 

  • Teranishi, T., Negishi, K., and Kato, S., 1983, Dopamine modulates S-potential amplitude and dye-coupling between external horizontal cells in carp retina, Nature, 301: 243–246.

    Article  PubMed  CAS  Google Scholar 

  • Theriault, E., and Landis, D.M.D., 1987, Morphology of striatal neurons containing VIP-like immunoreactivity, J. Comp. Neurol., 256: 1–13.

    Article  PubMed  CAS  Google Scholar 

  • van den Pol, A.N., Smith, A.D., and Powell, J.F, 1985, GABA axons in synaptic contact with dopamine neurons in the substantia nigra: double immunocytochemistry with biotin-peroxidase and protein A-colloidal gold, Brain Res., 348: 146–15.

    Article  PubMed  Google Scholar 

  • Vincent, S.R., and Johansson, O., 1983, Striatal neurons containing both somatostatin and avian pancreatic polypeptide (APP)-like immunoreactivities and NADPH-diaphorase activity: A light and electron microscopic study, J Comp Neurol, 217: 264–270.

    Article  PubMed  CAS  Google Scholar 

  • Vuillet, J., Kerkerian, L., Kachidian, P., Bosler, O., and Nieoullon, A., 1989a, Ultrastructural correlates of functional relationships between nigral dopaminergic or cortical afferent fibers and neuropeptide Y-containing neurons in the rat striatum, Neurosci Lett., 100: 99–104.

    Article  PubMed  CAS  Google Scholar 

  • Vuillet, J., Kerkerian, L., Salin, P., and Nieoullon, A., 1989b, Ultrastructural features of NPY-containing neurons in the rat striatum, Brain Res., 477: 241–251.

    Article  PubMed  CAS  Google Scholar 

  • Wainer, B.H., Levey, A.I., Mufson, E.J., and Mesulam, M.-M., 1984, Cholinergic systems in mammalian brain identified with antibodies against choline acetyltransferase, Neurochem Int, 6: 163–182.

    Article  PubMed  CAS  Google Scholar 

  • Walaas, S.I., Jahn, R., and Greengard, P., 1988, Quantitation of nerve terminal populations: synaptic vesicle-associated proteins as markers for synaptic density in the rat neostriatum, Bynapse, 2: 516–520.

    Article  CAS  Google Scholar 

  • Walsh, J.P., Cepeda, C., Hull, C.D., Fisher, R.S., Levine, M.S., and Buchwald, N.A., 1989, Dye-coupling in the neostriatum of the rat: II. Decreased coupling between neurons during development, Synapse, 4: 238–247.

    CAS  Google Scholar 

  • Woolf, N.J., and Butcher, L.L., 1986, Cholinergic systems in the rat brain: III. Projections from the pontomesencephalic tegmentum to the thalamus, tectum, basal ganglia, and basal forebrain, Brain Res. Bull., 16: 603–637.

    Article  PubMed  CAS  Google Scholar 

  • Woulfe, J., and Beaudet, A., 1989, Immunocytochemical evidence for direct connections between neurotensin-containing axons and dopaminergic neurons on the rat midbrain tegmentum, Brain Res 479: 402–406.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Pasik, P., Pasik, T., Holstein, G.R. (1991). The Ultrastructural Chemoanatomy of the Basal Ganglia: 1984–1989. II. The Pallidum, Substantia Nigra and Subthalamic Nucleus. In: Bernardi, G., Carpenter, M.B., Di Chiara, G., Morelli, M., Stanzione, P. (eds) The Basal Ganglia III. Advances in Behavioral Biology, vol 39. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5871-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5871-8_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5873-2

  • Online ISBN: 978-1-4684-5871-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics