Convergent Projections from Substantia Nigra and Cerebellum on Pontine Reticular Formation of Rat

  • Sabina Berretta
  • Vincenzo Perciavalle
Part of the Advances in Behavioral Biology book series (ABBI, volume 39)


Although basal ganglia and cerebellum represent two important motor structures, few data exist in literature regarding their cooperation in motor control. The only recent papers on reciprocal influences between these structures regard the control exerted by paleostriatum on neocerebellar neurons (Perciavalle et al., 1987) and the projections from intracerebellar nuclei to the dopaminergic structures of ventral midbrain tegmentum (Perciavalle et al., 1989). Cerebellum and basal ganglia could cooperate by sending their outputs on common motor targets, as thalamic nuclei controlling cortical motor areas or spinal-projecting brainstem structures. At thalamic level, no evidence has been found for convergence of cerebellar inputs on those neurons controlled by basal ganglia (Ueki et al., 1977; Uno and Yoshida, 1975). On the other hand, it has been demonstrated that cerebellar lateral nucleus (LN; Bantli and Bloedel, 1975) and pars reticulata of substantia nigra (SN; Perciavalle, 1987) are capable of exerting monosynaptic influences on single spinal-projecting neurons of pontomedullary reticular formation (RF). However, it is not yet known whether these cerebellar and nigral projections reach separate populations of RF cells or control the same RF neurons.


Reticular Formation Interpositus Nucleus Ketamine Hydrochloride Anesthesia Pontine Reticular Formation Terminal Label 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anden N.E., Larsson K., and Steg G., 1971, The influence of the nigro-neostriatal dopamine pathway on spinal motoneuron activity. Acta Physiol. Scand., 82: 268–271.PubMedCrossRefGoogle Scholar
  2. Bantli H., and Bloedel J.R., 1975, Monosynaptic activation of a direct reticulospinal pathway by the dentate nucleus. Pflugers Arch. ges. Physiol., 357: 237–242.CrossRefGoogle Scholar
  3. Batton R.R. III, Jayaraman A., Ruggiero D., and Carpenter M.B., 1977, Fastigial efferent projections in the monkey: an autoradiographic study. J. Comp. Neurol., 174: 281–306.PubMedCrossRefGoogle Scholar
  4. Cicirata.
    F., Angaut P., Pantò M.R., and Serapide M.F., 1989, Neocerebellar control of motor activity: experimental analysis in the rat. Comparative aspects. Brain Res. Rev. 14: 117–141.PubMedCrossRefGoogle Scholar
  5. Deniau J.M., Lackner D., and Feger J., 1978, Effect of substantia nigra stimulation on identified neurons in the VA-VL thalamic complex: comparison between intact and chronically decorticated cats. Brain Res. 145, 27–35.PubMedCrossRefGoogle Scholar
  6. Dray A., 1980, The physiology and pharmacology of mammalian basal ganglia. Prog. Neurobiol. 14, 221–335.PubMedCrossRefGoogle Scholar
  7. Fukushima K., Murakami S., Ohno M., and Kato M., 1980, Properties of mesencephalic reticulospinal neurons in the cat. Exp. Brain Res., 41: 75–78.PubMedCrossRefGoogle Scholar
  8. Fukushima K., Ohno M., and Kato M., 1981, Responses of cat mesencephalic reticulospinal neurons to stimulation of superior colliculus, pericruciate cortex, and neck muscle afferents. Exp. Brain Res., 44: 441–444.PubMedGoogle Scholar
  9. Giuffrida R., Licata F., Li Volsi G., Perciavalle V., and Urbano A., 1983, Pyramidal input to the intracerebellar nuclei. Neuroscience, 9: 421–427.PubMedCrossRefGoogle Scholar
  10. Giuffrida R., Li Volsi G., Maugeri G., and Perciavalle V., 1986, Pyramidal input to the basal ganglia in the cat. Exp. Brain Res., 61: 645–648.PubMedGoogle Scholar
  11. Grofova I., Ottersen O.P., and Rinvik E., 1978, Mesencephalic and diencephalic afferents to the superior colliculus and periaqueductal gray substance demonstrated by retrograde axonal transport of horseradish peroxidase in the cat. Brain Res. 146, 205–220.PubMedCrossRefGoogle Scholar
  12. Guyenet P.G., and Aghajanian G.K., 1978, Antidromic identification of dopaminergic and other output neurons of the rat substantia nigra. Brain Res. 150, 69–84.PubMedCrossRefGoogle Scholar
  13. Hassler R., and Wagner A., 1975, Locomotor activity and speed of movements in relation to monoamine-acting drugs. Int. J. Neurol. 10, 80–97.PubMedGoogle Scholar
  14. Horton J.C., Greenwood M.M., and Hubel D.H., 1979, Non-retinotopic arrangement of fibers in cat optic nerve. Nature, 282: 720–722.PubMedCrossRefGoogle Scholar
  15. Hubel D.H., 1960, Single unit activity in lateral geniculate body and optic tract of unrestrained cats. J. Physiol. (Lond.), 150: 91–104.PubMedGoogle Scholar
  16. Kumoi K., Saito N., Kuno T., and Tanaka C., 1988, Immunohistochemical localization of gamma-aminobutirric acid-and aspartate-containing neurons in the rat deep cerebellar nuclei, Brain Res., 439: 302–310.PubMedCrossRefGoogle Scholar
  17. Li Volsi G., Pacitti C., Perciavalle V., Sapienza S., and Urbano A., 1982, Interpositus nucleus influences on pyramidal tract neurons in the cat. Neuroscience, 7: 1929–1936.CrossRefGoogle Scholar
  18. Magni F., and Willis W.D., 1964, Cortical control of brain stem reticular neurons. Arch. Ital. Biol., 102: 418–433.PubMedGoogle Scholar
  19. Massion J., and Dufosse M., 1988, Coordination between posture and movement: why and how? NIPS, 3: 88–93.Google Scholar
  20. Mesulam M.M., 1978, Tetramethyl benzidine for horseradish peroxidase neurohistochemstry: a non-carcinogenic blue reaction-product with superior sensivity for visualizing neural afferents and efferents. J. Histochem. Cytochem., 26: 106–117.PubMedCrossRefGoogle Scholar
  21. Mesulam M.M., 1982, Principles of horseradish peroxidase neurochemstry and their application for tracing neural pathways–axonal transport enzyme histochemstry and light microscopic analysis. In: “Tracing Neural Connections with Horseradish Peroxidase”, M.M. Mesulam, ed., pp 1–152, Wiley, New York.Google Scholar
  22. Mugnaini E., and Oertel W.H., 1985, An atlas of the distribution of GABAergic neurons and terminals in the rat CNS as revealed by GAD immunohistochemstry. In: “Handbook of Chemical Anatomy, Vol. 4, GABA and Neuropeptides in the CNS”, A. Bjorklund and T. Hokfelt, eds, pp. 436–608, Elsevier, Amsterdam.Google Scholar
  23. Paxinos.
    G., and Watson C., 1986, “The Rat Brain in Stereotaxic Coordinates”, 2nd edn, Academic Press, Sydney - New York - London.Google Scholar
  24. Perciavalle V., 1987, Substantia nigra influences on the reticulospinal neurons: an electrophysiological and ionophoretic study in cats and rats. Neuroscience, 23: 243–251.PubMedCrossRefGoogle Scholar
  25. Perciavalle V., Berretta S., Li Volsi G., and Polizzi M.C., 1987, Basal ganglia influences on the cerebellum of the cat. Arch. Ital. Biol., 125: 29–35.PubMedGoogle Scholar
  26. Perciavalle V., Berretta S., and Raffaele R., 1989, Projections from the intracerebellar nuclei to the ventral midh,rain tegmentum in the rat. Neuroscience, 29: 109–119.PubMedCrossRefGoogle Scholar
  27. Peterson B.W., 1979, Reticulospinal projection to spinal motor nuclei. Ann. Rev. Physiol., 41: 127–140.CrossRefGoogle Scholar
  28. Pilyaysky.
    A.L., and Gokin A.P., 1978, Investigation of the cortico-reticulo-spinal connections in cats. Neuroscience, 3: 99–103.CrossRefGoogle Scholar
  29. Rinvik E., Grofova I., and Ottersen O.P., 1976, Demonstration of nigrotectal and nigroreticular projections in the cat by axonal transport of proteins. Brain Res. 112, 388–394.PubMedCrossRefGoogle Scholar
  30. Sirkin D.W., Schallert T., and Ottersen O.P., 1976, Demonstration of nigrotectal and nigroreticular projections in the cat by axonal transport of proteins. Brain Res., 112: 435–457.CrossRefGoogle Scholar
  31. Ueki A., Uno M., Anderson M., and Yoshida M., 1977, Monosynaptic inhibition of thalamic neurons produced by stimulation of substantia nigra. Experientia, 33: 1480–1481.PubMedCrossRefGoogle Scholar
  32. Uno M., and Yoshida M., 1975, Monosynaptic inhibition of thalamic neurons produced by stimulation of pallidal nucleus in cats. Brain Res., 99: 377–380.PubMedCrossRefGoogle Scholar
  33. Voogd J., 1964, “The Cerebellum of the Cat: Structure and Fibre Connexions”, Van Gorcum, Assen.Google Scholar
  34. Walberg F., Pompeiano O., Westrum L.E., and Hauglie-Hanssen E., 1962, Fastigioreticular fibers in cat: an experimental study with silver methods. J. Comp. Neurol., 119: 187–199.PubMedCrossRefGoogle Scholar
  35. Wolf G., and Gollob H.F., 1980, Quantitative assessment of brain lesions. Physiol. Behay., 24: 1195–1199.CrossRefGoogle Scholar
  36. D.H., 1972, Alterations in monosynaptic reflex produced by stimulation of the substantia nigra. In: “Corticothalamic Projections and Sensorimotor Activities”, T.L. Frigyesi and E. Rinvik, eds, pp. 445–447, Raven Press, New York.Google Scholar
  37. D.H., 1973, Motor responses induced by stimulation of the substantia nigra. Exp. Neurol., 41: 323–330.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Sabina Berretta
    • 1
  • Vincenzo Perciavalle
    • 1
  1. 1.Institute of Human PhysiologyUniversity of CataniaCataniaItaly

Personalised recommendations