Determination of Complex Carbohydrate Structure Using Carbonyl Carbon Resonances of Peracetylated Derivatives

  • Warren J. Goux
Part of the Basic Life Sciences book series (BLSC, volume 56)


Oligosaccharides constitute the most abundant and diverse group of compounds present in living systems. Their functions range from that of antigenic determinants, such as the ABO blood-group determinants of man, to the purported regulation of gene expression in plants (Watkins, 1972; Darvill and Albersheim, 1984). Their physiological roles appear to be influenced by their tertiary and, ultimately, their primary structure (Brisson and Carver, 1983; Homans et al., 1986; Carver, 1984; Montreuil, 1980). Their structural complexity arises from the large number of structurally unique residues present and from the variety of ring configurations and of glycosidic linkages that can be made to and from neighboring residues.


Glycosidic Linkage Residue Type Neighboring Residue Acetoxy Group Shift Space 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albano, C., Blomquist, G., Dunn, III, W., Edlund, U., Eliasson, B., Johansson, E., Norden, B., Sjostrom, M., Soderstrom, B., and Wold, S., 1979, Characterization and Classification Based on Multivariable Analysis, in: “27th Inter. Congress Pure and Appl. Chem.,” A. Vermavwori, ed., Pergamon Press, New York, NY.Google Scholar
  2. Albano, C., Dunn, III, W., Edlund, U., Johansson, E., Norden, B., Sjostrom, M., and Wold, S., 1978, Four Levels of Pattern Recognition, Anal. Chim. Acta, 103:429.CrossRefGoogle Scholar
  3. Allerhand, A., and Berman, E., 1984, A Systematic Approach to the Analysis 13 of C NMR of Complex Carbohydrates. α-D-Mannopyranosyl Residues in Oligosaccharides and their Implications to Studies of Glycoproteins and Glycopeptides, J. Am. Chem. Soc., 106:2400.CrossRefGoogle Scholar
  4. Allerhand, A., Doddrell, D., and Komoroski, R., 1971, Natural Abundance Carbon-13 Partially Relaxed Fourier Transform Nuclear Magnetic Resonance Spectra of Complex Molecules, J. Chem. Phys., 55:189.CrossRefGoogle Scholar
  5. Appleton, M. L., Cottrell, C. E., and Behrman, E. J., 1986, NMR Assignments of Acetyl and Trityl Groups in Derivatized Carbohydrates via Proton-Carbon Long-Range Couplings, Carbohydr. Res., 158:227.PubMedCrossRefGoogle Scholar
  6. Brisson, J. R., and Carver, J. P., 1983, Conformation of α-D(l->3) and α-D(l->6)-Linked Oligomannosides Using Proton NMR, Biochemistry, 22:1362.PubMedCrossRefGoogle Scholar
  7. Carver, J. P., 1984, The Role of 3-D Structure in the Control of N-Linked Oligosaccharide Biosynthesis, Biochem. Soc. Trans., 12:517.PubMedGoogle Scholar
  8. Darvill, A. G., and Albersheim, P., 1984, Phytoalexins and Their Elicitors, Annu. Rev. Plant Physiol., 35:243CrossRefGoogle Scholar
  9. Dill, K., Berman, E., and Pravia, A. A., 1985, Natural-Abundance C NMR Spectral Studies of Carbohydrates Linked to Amino Acids and Proteins, Adv. Carbohydr. Chem. Biochem., 43:1.PubMedCrossRefGoogle Scholar
  10. Edlund, U., and Sjostrom, M., 1977, Analysis 13 of C NMR Data by Means of Pattern Recognition Methodology, J. Magn. Res., 25:285.Google Scholar
  11. Edlund, U., and Wold, S., 1980, Interpretation of NMR Substituent Parameters by Use of a Pattern Recognition Approach, J. Magn. Res., 37:183.Google Scholar
  12. Gagnaire, D. Y., Taravel, F. R., and Vignon, M. R., 1976, Assignment of 13 C NMR Signals of Peracetylated Disaccharides Containing Glucose, Carbohydr. Res., 51:157.CrossRefGoogle Scholar
  13. Goux, W. J., 1988, The Determination of Complex Carbohydrate Structure by Using Carbonyl Carbon Resonances of Peracetylated Derivatives, Carbohydr. Res., 184:47.PubMedCrossRefGoogle Scholar
  14. Goux, W. J., and Unkefer, C. J., 1987, The Assignment of Carbonyl 13 Resonances in C NMR Spectra of Peracetylated Mono-and Oligosaccharides Containing D-Glucose and D-Mannose: An Alternative Method for Structural Determination of Complex Carbohydrates, Carbohydr. Res., 159:191.PubMedCrossRefGoogle Scholar
  15. Homans, S. W., Dwek, R. A., Boyd, J., Mahmoudian, M., Richards, W. G., and Rademacher, T. W., 1986, Conformational Transitions in N-Linked Oligosaccharides, Biochemistry, 25:6342.PubMedCrossRefGoogle Scholar
  16. Johnels, D., Edlund, U., Grahn, H., Hellberg, S., Sjostrom, M., Wold, S., Clementi, S., and Dunn, III, W., 1983, Clustering of Aryl Carbon-13 NMR Substituent Chemical Shifts. A Multivariable Data Analysis Using Principal Components, J. Chem. Soc. Perkin Trans. II, 863.Google Scholar
  17. Jurs, P. C., 1986, Pattern Recognition Used to Investigate Multivariable Data in Analytical Chemistry, Science, 232:1219.PubMedCrossRefGoogle Scholar
  18. Kowalski, B. R., 1975, Measurement Analysis by Pattern Recognition. Survey of Computer Aided Methods for Mass Spectral Analysis, Anal. Chem., 47:1152A.Google Scholar
  19. Kowalski, B. R., and Bender, C. F., 1972a, The K-Nearest Neighbor Classification Rule Applied to NMR Spectral Analysis, Anal. Chem., 44:1405.CrossRefGoogle Scholar
  20. Kowalski, B. R., and Bender, C. F., 1972b, Pattern Recognition. A Powerful Approach to Interpreting Chemical Data, J. Amer. Chem. Soc, 94:5632.CrossRefGoogle Scholar
  21. Lowry, S. R., Isenhour, T. L., Justice, Jr., J. B., McLafferty, F. W., Dayringer, H. E., and Venkataraghavan, R., 1977, Comparison of Various K-Nearest Neighbor Voting Schemes with Self-Training Interpretive and Retrieval Systems for Identifying Molecular Substructures from Mass Spectral Data, Anal. Chem., 49:1720.CrossRefGoogle Scholar
  22. Montreuil, J., 1980, Primary Structure of Glycoprotein Glycans, Adv. Carbohydr. Chem. Biochem., 37:157.PubMedCrossRefGoogle Scholar
  23. Sharaf, M. A., Illman, D. L., and Kowalski, B. R., 1986, Chapter 6: Exploratory Data Analysis, in: “Chemometrics” (Chemical Analysis, V. 82), John Wiley and Sons, New York, NY.Google Scholar
  24. Sillerud, L. O., Yu, R. K., and Schafer, D. E., 1982, Assignment of C NMR Spectra of Gangliosides, Biochemistry, 21:1260.PubMedCrossRefGoogle Scholar
  25. Vliegenthart, J. F. G., Dorland, L., van Halbeek, H., 1983, High Resolution H NMR Spectroscopy as a Tool in Structural Analysis of Carbohydrates Related to Glycoproteins, Adv. Carbohydr. Chem. Biochem., 41:209.CrossRefGoogle Scholar
  26. Vliegenthart, J. F. G., van Halbeek, H., and Dorland, L., 1981, Applicability of 500 MHz H NMR for the Structure Determination of Carbohydrates Derived from Glycoproteins, Pure Appl. Chem., 53:45.CrossRefGoogle Scholar
  27. Watkins, W. M., 1972, Blood Group Specific Substances, in: “Glycoproteins, Part B,” 2nd edition, A. Gottschalk, ed., Elsevier, Amsterdam.Google Scholar
  28. Wold, S., 1976, Pattern Recognition by Means of Disjoint Principal Component Models, Pattern Recog., 8:127.CrossRefGoogle Scholar
  29. Wold, S., 1978, Cross-Validatory Estimation of the Number of Components in Factor and Principal Component Models, Technometrics, 20:397.Google Scholar
  30. Wold, S. and Sjostrom, M., 1986, SIMCA: A Method for Analyzing Chemical Data in Terms of Similarity and Analogy, in: “Chemometrics: Theory and Application,” A. Kowalski, ed., American Chemical Society, Washington, DC.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Warren J. Goux
    • 1
  1. 1.Department of ChemistryUniversity of Texas at DallasRichardsonUSA

Personalised recommendations