Two-Dimensional NMR Spectrum Editing of Carbohydrates

  • Bruce Coxon
Part of the Basic Life Sciences book series (BLSC, volume 56)


Expansion of the application of multiple-pulse NMR methods to chemical analysis has been accompanied by the development of many different NMR spectrum editing techniques that are directed towards selective display of the spectra of various molecular features. One of the most popular one-dimensional (1D) methods of this type has been the Distortionless Enhancement by Polarization Transfer (DEPT) technique (Doddrell et. al., 1982), which is often used to generate carbon-hydrogen multiplicity information for use in automated 13C database and spectral search programs. In its most common form, (Doddrell et al., 1982; Bendall et al., 1982) the 1D DEPT method involves the acquisition of three spectra at three polarization transfer pulse flip angles (θ) of 45°, 90°, and 135°, followed by the construction of three linear combinations of the spectra which form the XH, XH2, and XH3 heteronuclear subspectra (X = 13C or 15N, or other nuclei).


Multiple Quantum Dependence Curve Pascal Program Fixed Point Arithmetic Chemical Shift Correlation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bain, A. D., Hughes, D. W., and Hunter, H. N., 1988, Magn. Reson. Chem., 26:1058.CrossRefGoogle Scholar
  2. Bax, A., 1983, J. Magn. Reson., 53:517.Google Scholar
  3. Bendall, M. R., Doddrell, D. M., Pegg, D. T., and Hull, V. E., 1982, Bruker brochure: “DEPT”.Google Scholar
  4. Bodenhausen G., and Ernst, R. R., 1981, J. Magn. Reson., 45:367.Google Scholar
  5. Bulsing, J. M., Brooks, W. M., Field, J., and Doddrell, D. M., 1984, J. Magn. Reson., 56:167.Google Scholar
  6. Bulsing, J. M., and Doddrell, D. M., 1985, J. Magn. Reson., 61:197.Google Scholar
  7. Celmer, W. D., and Hobbs, D. C., 1965, Carbohydr. Res., 1:137.CrossRefGoogle Scholar
  8. Coxon, B., 1983, Poster B-33, 24th Experimental NMR Conference, Asilomar, CA, April 10–14.Google Scholar
  9. Coxon, B., 1985, Abstract B-17, 26th Experimental NMR Conference, Asilomar, CA, April 21–25.Google Scholar
  10. Coxon, B., 1986, J. Magn. Reson., 66:230.Google Scholar
  11. Coxon, B., 1988, Magn. Reson. Chem., 26:449.CrossRefGoogle Scholar
  12. Doddrell, D. M., Pegg, D. T., and Bendall, M. R., 1982, J. Magn. Reson., 48:323.Google Scholar
  13. Griesinger, C., Sorensen, O. W., and Ernst, R. R., 1987, J. Am. Chem. Soc., 109:7227.CrossRefGoogle Scholar
  14. Levitt, M. H., Sorensen, O. W., and Ernst, R. R., 1983, Chem. Phys. Lett., 94:540.CrossRefGoogle Scholar
  15. Nakashima, T. T., John, B. K., and McClung, R. E. D., 1984a, J. Magn. Reson., 57:149.Google Scholar
  16. Nakashima, T. T., John, B. K., and McClung, R. E. D., 1984b, J. Magn. Reson., 59:124.Google Scholar
  17. Richarz, R., Ammann, W., and Wirthlin, T., 1982, Varian Application Note: “DEPT”, no. Z-15.Google Scholar
  18. Shaka, A. J., Keeler, J., and Freeman, R., 1983, J. Magn. Reson., 53:313.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Bruce Coxon
    • 1
  1. 1.Center for Analytical ChemistryNational Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations