Applications of 2D NMR Spectroscopy to Carbohydrates

  • L. Lerner
Part of the Basic Life Sciences book series (BLSC, volume 56)


Two-dimensional high resolution nuclear magnetic resonance spectroscopy (2D NMR) is a powerful tool for determining the structure and conformation of carbohydrates in solution. Applications to carbohydrate problems have followed closely on the heels of development of sophisticated two dimensional — and now three dimensional — pulse sequences (Hoffman and Davies, 1988; Fesik et al., 1989; Vuister et al., 1989).


Anomeric Proton Coherence Transfer Chemical Shift Correlation High Resolution Nuclear Magnetic Resonance Characteristic Chemical Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Batta, G., and Liptak, A., 1985, J. Chem. Soc., Chem. Commun., 1985:368–370.CrossRefGoogle Scholar
  2. Bauer, C., Freeman, R., Frenkiel, T., Keeler, J., and Shaka, A. J., 1984, J. Magn. Reson., 58:442–457.Google Scholar
  3. Bax, A., 1982, “Two-dimensional Nuclear Magnetic Resonance in Liquids,” D. Reidel Publishing Company, Boston.Google Scholar
  4. Bax, A., Griffey, R. H., and Hawkins, B. L., 1983, J. Magn. Reson., 55:301–305.Google Scholar
  5. Bax, A., Egan, W., and Kovac, P., 1984, J. Carbohydr. Chem., 3:593–611.CrossRefGoogle Scholar
  6. Bax, A., and Davis, D. G., 1985, J. Magn. Reson., 65:355–360.Google Scholar
  7. Bax, A., and Subramanian, S., 1986, J. Magn. Reson., 67:565–569.Google Scholar
  8. Bax, A., and Lerner, L., 1988, J. Magn. Reson., 79:429–438.Google Scholar
  9. Bax, A., and Marion, D., 1988, J. Magn. Reson., 78:186–191.Google Scholar
  10. Braunschweiler, L., and Ernst, R. R., 1983, J. Magn. Reson., 53:521–528.Google Scholar
  11. Dabrowski, J., 1987, Ch. 6 in W. R. Croasmun and R. M. K. Carlson (eds.), 1978, “Two-dimensional NMR spectroscopy for chemists and biochemists, Methods in Stereochemical Analysis,” v. 9, VCH Publishers, Inc., New York.Google Scholar
  12. Davis, D. G., and Bax, A., 1985, J. Am. Chem. Soc., 107:7197–7198.CrossRefGoogle Scholar
  13. Eich, G., Bodenhausen, G., and Ernst, R. R., 1982, J. Am. Chem. Soc., 104:3732–372.CrossRefGoogle Scholar
  14. Ernst, R. R., Bodenhausen, G., and Wokaun, A., 1987, “Principles of Nuclear Magnetic Resonance in One and Two Dimensions,” Oxford University Press, Oxford.Google Scholar
  15. Fesik, S. W., Gampe, Jr., R. T., and Zuiderweg, E. R. P., 1989, J. Am. Chem. Soc., 111:770–772.CrossRefGoogle Scholar
  16. Field, L. D., and Messerle, B. A., 1986, J. Magn. Reson., 66:483–490.Google Scholar
  17. Garbow, J. R., Weitekamp, D. P., and Pines, A., 1982, Chem. Phys. Lett., 93:504–509.CrossRefGoogle Scholar
  18. Griesinger, C., Sorensen, O. W., and Ernst, R. R., 1985, J. Am. Chem. Soc., 107:6394–6396.CrossRefGoogle Scholar
  19. Griffey, R. H., and Redfield, A., 1987, Quart. Rev. Biophys., 19:51–82.CrossRefGoogle Scholar
  20. Hoffman, R. E., and Davies, D. B., 1988, J. Magn. Reson., 80:337–339.Google Scholar
  21. Homans, S. W., Dwek, R. A., Boyd, J., Mahmoudian, M., Richards, W. G., and Rademacher, T. W., 1986, Biochemistry, 25:6342–6350.PubMedCrossRefGoogle Scholar
  22. Inagaki, F., Shimada, I., Kohda, D., Suzuki, A., and Bax, A., 1989, J. Magn. Reson., 81:186–190.Google Scholar
  23. Kessler, H., Oschkinat, H., Griesinger, C., and Bermel, W., 1986, J. Magn. Reson., 70:106–133.Google Scholar
  24. Kessler, H., Gehrke, M., and Griesinger, C., 1988, Angew. Chem. Int. Ed. Engl., 27:490–536.CrossRefGoogle Scholar
  25. Kogler, H., Sorensen, O. W., Bodenhausen, G., and Ernst, R. R., 1983, J. Magn. Reson., 55:157–163.Google Scholar
  26. Lerner, L., and Bax, A., 1986, J. Magn. Reson., 69:375–380.Google Scholar
  27. Lerner, L., and Bax, A., 1987, Carbohydr. Res., 166:35–46.PubMedCrossRefGoogle Scholar
  28. Maudsley, A. A., and Ernst, R. R., 1977, Chem. Phys. Lett., 50:368–372.CrossRefGoogle Scholar
  29. Morris, G. A., and Hall, L. D., 1981, J. Am. Chem. Soc., 103:4703–4711.CrossRefGoogle Scholar
  30. Müller, L., 1979, J. Am. Chem. Soc., 101:4481–4484.CrossRefGoogle Scholar
  31. Piantini, U., Sorensen, O. W., and Ernst, R. R., 1982, J. Am. Chem. Soc., 104:6800–6801.CrossRefGoogle Scholar
  32. States, D. J., Haberkorn, R. A., and Ruben, D. J., 1982, J. Magn. Reson., 48:286–292.Google Scholar
  33. Sklemir, V., and Bax, A., 1987, J. Magn. Reson., 71:379–383.Google Scholar
  34. Subramanian, S., and Bax, A., 1987, J. Magn. Reson., 71:325–330.Google Scholar
  35. Vliegenthart, J. F. G., Dorland, L., and van Halbeek, H., 1983, Adv. Carbohydr. Chem. Biochem., 41:209–374.CrossRefGoogle Scholar
  36. Vuister, G. W., de Waard, P., Boelens, R., Vliegenthart, J. F. G., and Kaptein, R., 1989, J. Am. Chem. Soc., 111:772–774.CrossRefGoogle Scholar
  37. Williamson, D. S., Smith, R. A., Nagel, D. L., and Cohen, S. M., 1989, J. Magn. Reson., 82:605–612.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • L. Lerner
    • 1
  1. 1.Department of ChemistryUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations