Advertisement

Characterization of Water in Foods by NMR

  • Shelly J. Richardson Schmidt
Part of the Basic Life Sciences book series (BLSC, volume 56)

Abstract

Water is probably the most important component of a food system because it influences so many process variables and product characteristics. For example, water is a key component in determining the amount of energy necessary for many unit operations, such as freezing, dehydration and freeze-drying; water strongly influences chemical changes, such as protein denaturation (Nakano and Yasui, 1976), Maillard browning (Labuza and Saltmarch, 1981) and enzyme activity (Drapron, 1985); water is the determining factor in rheological behavior (Urbanski, 1981); water is extensively involved in chemical, physical, nutritional (Kirk, 1981) and microbial changes during storage; finally, water is involved in the kinesthetic attributes of the food during consumption (Katz and Labuza, 1981). This extensive involvement of water in food processing and stability has made it an essential focus of study from many directions and for many years.

Keywords

Nuclear Magnetic Resonance Nuclear Magnetic Resonance Spectrum Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance Data Nuclear Magnetic Resonance Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ablett, S., Lillford, P. J., Baghdadi, S. M. A., and Derbyshire, W., 1976, NMR relaxation in polysaccharide gels and films, in: “Magnetic Resonance in Colloid and Interface Science,” Resing, H. A., and Wade, C. G. (Eds.), ACS Symposium Series 34, American Chemical Society, Washington, DC.Google Scholar
  2. Abragam, A., 1961, The Principles of Nuclear Magnetism, Clarendon Press, Oxford.Google Scholar
  3. Agvayo, J. B., Blackband, S. J., Schoeniger, J., Mattingly, M. A., and Hintermann, M., 1986, Nuclear magnetic resonance imaging of a single cell, Nature, 322:190.CrossRefGoogle Scholar
  4. Andrew, E. R., 1983, NMR imaging, Acc. Chem. Res., 16:114.CrossRefGoogle Scholar
  5. Arai, S., and Watanabe, M., 1985, An enzymatically modified protein as a new surfactant and its function to interact with water and oil in an emulsion system, in: “Properties of Water in Foods,” Simatos, D., and Multon, J. L., (Eds.), Martinus Nijhoff Publishers, Boston, MA.Google Scholar
  6. Basler, V. W., and Lechert, H., 1974, Diffusion of water in starch gels, Starch, 26(2):39.CrossRefGoogle Scholar
  7. Baianu, I. C., 1989, Personal communication, University of Illinois, Champaign -Urbana, IL.Google Scholar
  8. Ben-Et, G., and Tatarsky, D., 1972, Application of NMR for the determination of HLB values of nonionic surfactants, JAOCS, 49:499.CrossRefGoogle Scholar
  9. Berendsen, H. J. C., 1975, Specific interactions of water with biopolymers, in: “Water -A Comprehensive Treatise, Vol. 5. Water in Disperse Systems,” Franks, F. (Ed.), Plenum Press, New York.Google Scholar
  10. Berliner, L. J., and Reuben, J., (Eds.), 1980, Biological Magnetic Resonance, Plenum Press, New York.Google Scholar
  11. Blum, F. D., 1986, Pulsed-gradient spin-echo nuclear magnetic resonance spectroscopy, Spectroscopy, 1(5):32.Google Scholar
  12. Bociek, S., and Franks, F., 1979, Proton exchange in aqueous solutions of glucose, Faraday Trans. I., 2:262.CrossRefGoogle Scholar
  13. Bottomly, P. A., 1982, NMR imaging techniques and applications: A review, Rev. Sci. Instrum., 53:1319.CrossRefGoogle Scholar
  14. Bradley, R. S., 1936, Polymolecular adsorbed films, I. The adsorption of argon on salt crystals at low temperatures and the determination of surface fields, J. Chem. Soc., 1467.Google Scholar
  15. Brevard, C., and Kintzinger, J. P., 1978, Deuterium and tritium, in: “NMR and the Periodic Table,” Harris, R. K., and Mann, B. E., (Eds.), Academic Press, New York.Google Scholar
  16. Brittain, T., and Geddes, R., 1978, Water binding by glycogen molecules, Biochem. Biophys. Acta., 543:258.PubMedCrossRefGoogle Scholar
  17. Brosio, E., Altobelli, G., Yu, S. Y., and DiNola, A., 1983, A pulsed low resolution NMR study of water binding to powdered milk, J. Fd. Technol., 18:219.CrossRefGoogle Scholar
  18. Brosio, E., Conti, F., DiNola, A., Scalzo, M., and Zulli, E., 1982, Oil and water determination in emulsions by pulsed low-resolution NMR, JAOCS, 59(1):59.CrossRefGoogle Scholar
  19. Brosio, E., Conti, F., DiNola, A., Scorano, 0., and Balestrieri, F., 1981, Simultaneous determination of oil and water content in olive husk by pulsed low resolution nuclear magnetic resonance, J. Fd. Technol., 16:629.CrossRefGoogle Scholar
  20. Brown, W., and Stilbs, P., 1982, Self-diffusion measurements on bovine serum albumin solutions and gels using a pulsed-gradient spin-echo NMR technique, Chemica Scripta, 19:161.Google Scholar
  21. Brunauer, S., Emmett, P. H., and Teller, E., 1938, Adsorption of gases in multi-molecular layers, J. Am. Chem. Soc., 60:309.CrossRefGoogle Scholar
  22. Brunner, P., and Ernst, R. R., 1979, Sensitivity and performance time in NMR imaging, J. Magn. Reson., 33:83.CrossRefGoogle Scholar
  23. Bryant, R. G., 1978, NMR relaxation studies of solute-solvent interactions, Ann. Rev. Phys. Chem., 29:167.CrossRefGoogle Scholar
  24. Budinger, T. F., and Lauterbur, P. C., 1984, Nuclear magnetic resonance technology for medical studies, Science, 226:288.PubMedCrossRefGoogle Scholar
  25. Callaghan, P. T., 1984, Pulsed field gradient nuclear magnetic resonance as a probe of liquid state molecular organization, Aust. J. Phys., 37:359.Google Scholar
  26. Callaghan, P. T., and Jolley, K. W., 1983, Diffusion of fat and water in cheese as studied by pulsed field gradient nuclear magnetic resonance, J. Colloid and Interface Sci., 93(2):521.CrossRefGoogle Scholar
  27. Callaghan, P. T., Jolley, K. W., and Lelievre, J., 1979, Diffusion of water in the endosperm tissue of wheat grains as studied by pulsed field gradient nuclear magnetic resonance, Biophys. J., 28:133.PubMedCrossRefGoogle Scholar
  28. Callaghan, P. T., Le Gros, M. A., and Pinder, D. N., 1983a, The measurement of diffusion using deuterium pulsed field gradient nuclear magnetic resonance, J. Chem. Phys., 79(12):6372.CrossRefGoogle Scholar
  29. Callaghan, P. T., Jolley, K. W., Lelievre, J., and Wong, R. B. K., 1983b, Nuclear magnetic resonance studies of wheat starch pastes, J. Colloid and Interface Sci., 92(2):332.CrossRefGoogle Scholar
  30. Callaghan, P. T., and Lelievre, J., 1985, The size and shape of amylopectin: A study using pulsed-field gradient nuclear magnetic resonance, Biopolymers, 24:441.CrossRefGoogle Scholar
  31. Callaghan, P. T., and Lelievre, J., 1986, The influence of polymer size and shape on self-diffusion of polysaccharides and solvents, Analytica Chimica Acta., 189:145.CrossRefGoogle Scholar
  32. Callaghan, P. T., Eccles, C. D., and Xia, Y., 1988, NMR microscopy of dynamic displacements: k-space and q-space imaging, J. Phys. E: Sci. Instrum., 21:820.CrossRefGoogle Scholar
  33. Cameron, I. L., Hunter, K. E., Ord, V. A., and Fullerton, G. D., 1985, Relationships between ice crystal size, water content and proton NMR relaxation times in cells, Physiological Chem. and Physics and Medical NMR, 17:371.Google Scholar
  34. Campbell, I. D., and Dwek, R. A., 1984, Biological Spectroscopy, Chapt. 6, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA.Google Scholar
  35. Chang, D. C., Roscharch, H. E., Nichols, B. L., and Hazlewood, C. F., 1973, Implications of diffusion coefficient measurements for the structure of cellular water, Annals N.Y. Academy of Sciences, 204:434.CrossRefGoogle Scholar
  36. Child, T. F., and Pryce, N. G., 1972, Steady-state and pulse NMR studies of gelatin in aqueous agarose, Biopolymers, 11:409.CrossRefGoogle Scholar
  37. Cho, Z. H., Oh, C. H., Kim, Y. S., Mun, C. W., Nalcioglu, 0., Lee, S. J., and Chung, M. K., 1986, A new nuclear magnetic resonance imaging technique for unambiguous unidirectional measurement of flow velocity, J. Appl. Phys., 60:1256.CrossRefGoogle Scholar
  38. Christian, J. H. B., 1981, Specific solute effects on microbial/water relations, in: “Water Activity: Influences on Food Quality,” Rockland, L. B., and Stewart, G. F., (Eds.), Academic Press, New York.Google Scholar
  39. Cooke, R., and Kuntz, I. D., 1974, The properties of water in biological systems, Ann Rev. Biophys. Bioeng., Mullins, L. J., (Ed.), 9035:95.Google Scholar
  40. Currie, R. W., Jordan, R., and Wolfe, F. H., 1981, Changes in water structure in postmortem muscle, as determined by NMR T1 values, J. Food Sci., 46:822.CrossRefGoogle Scholar
  41. Derbyshire, W., and Duff, I. D., 1973, NMR of agarose gels, Chem. Soc. Faraday Discuss., 57:243.CrossRefGoogle Scholar
  42. Derbyshire, W., 1982, The dynamics of water in heterogeneous systems with emphasis on subzero temperatures, in: “Water -A Comprehensive Treatise. Vol. 7. Water and Aqueous Solutions at Subzero Temperatures,” Franks, F., (Ed.), Plenum Press, New York.Google Scholar
  43. Derome, A. E., 1987, Modern NMR Techniques for Chemistry Research, Pergamon Press, New York.Google Scholar
  44. Drapron, R., 1985, Enzyme activity as a function of water activity, in: “Properties of Water in Foods,” Simatos, D., and Multon, J. L., (Eds.), Martinus Nijhoff Publishers, Boston, MA. 17Google Scholar
  45. Earl, W. L., and Niederberger, W., 1977, Proton decoupling in 0 nuclear magnetic resonance, J. Magn. Reson., 27:351.CrossRefGoogle Scholar
  46. Eccles, C. D., and .Callaghan, P. T., 1986, High-resolution imaging: The NMR microscope, J. Magn. Reson., 68:393.CrossRefGoogle Scholar
  47. Eccles, C. D., Callaghan, P. T., and Jenner, C. F., 1988, Measurement of the self-diffusion coefficient of water as a function of position in wheat grain using nuclear magnetic resonance imaging, Biophys. J., 53:77.PubMedCrossRefGoogle Scholar
  48. Edzes, H., and Samulski, E., 1978, The measurement of cross-relaxation effects in proton NMR spin lattice relaxation of water in biological systems: Hydrated collagen and muscle, J. Magn. Reson., 31:207.CrossRefGoogle Scholar
  49. Eisenstadt, M., and Fabry, M. E., 1978, NMR relaxation of the hemoglobin-water proton spin system in red blood cells, J. Magn. Reson., 29:591.CrossRefGoogle Scholar
  50. Farrell, H. M., Pessen, H., and Kumosinski, T. F., 1987, Water 2 interactions with varying molecular states of milk proteins: H NMR relaxation studies, 82nd Annual Meeting of the American Dairy Association, Paper Columbia, Missouri, June 21–24.Google Scholar
  51. Finney, J. L., Goodfellow, J. M., and Poole, P. L., 1982, The structure and dynamics of water in globular proteins, in: “Structural Molecular Biology -Methods and Applications,” Davies, D. B., Saenger, W., and Danyluk, S. S., (Eds.), Plenum Press, New York.Google Scholar
  52. Flink, J. M., 1983, Structure and structure transitions in dried carbohydrate materials, in: “Physical Properties of Foods,” Peleg, M., and Bagley, E.B., (Eds.), AVI Publishing Co., Inc., Westport, Connecticut.Google Scholar
  53. Franks, F., 1982, Water activity as a measure of biological viability and quality control, Cereal Foods World, 27(9):403.Google Scholar
  54. Fuller, M. E., and Brey, W. S., 1968, Nuclear magnetic resonance study of water sorbed on serum albumin, J. Biol. Chem., 243(2):1968.Google Scholar
  55. Glasel, J. A., 1972, Nuclear magnetic resonance studies on water and ice, in: “Water -A Comprehensive Treatise Vol. 1,” Franks, F., (Ed.), Plenum Press, New York.Google Scholar
  56. Goldsmith, S. M., and Toledo, R. T., 1985, Studies on egg albumin gelation using nuclear magnetic resonance, J. Food Sci., 50:59.CrossRefGoogle Scholar
  57. Gould, G. V., and Measures, J. C., 1977, Water relations in single cells, Philos. Trans. R. Soc. London Ser., B278:151.Google Scholar
  58. Grigera, J. R., and Bienkiewicz, K. J., 1984, Hydration of collagen. Support for the exchange model, Studia Biophysica, 103(3):195.Google Scholar
  59. Hall, L. D., Luck, S., and Rajanayagam, V., 1986, Construction of a high-resolution NMR probe for imaging with submillimeter spactial resolution, J. Magn. Reson., 66:349.CrossRefGoogle Scholar
  60. Halle, B., Andersson, T., Forsen, S., and Lindman, B., 1981, Protein hydration from oxygen-17 magnetic relaxation, J. Am. Chem. Soc., 103:500.CrossRefGoogle Scholar
  61. Halle, B., and Karlstrom, G., 1983, Prototropic charge migration in water, Part 1., J. Chem. Soc. Faraday Trans., 279:1031.Google Scholar
  62. Halle, B., and Wennerstrom, H., 1981, Interpretation of magnetic resonance data from water nuclei in heterogeneous systems, J. Chem. Phys., 75(4):1928.CrossRefGoogle Scholar
  63. Hansen, J. R., 1974, High-resolution and pulsed nuclear magnetic resonance studies of microemulsions, J. Phys. Chem., 78(3):256.CrossRefGoogle Scholar
  64. Hansen, J. R., 1976, Hydration of soybean protein, J. Agric. Food Chem., 24(6):1136.CrossRefGoogle Scholar
  65. Harvey, J. M., and Symons, M. C. R., 1976, Proton magnetic resonance study of the hydration of glucose, Nature, 261:435.PubMedCrossRefGoogle Scholar
  66. Harvey, J. M., and Symons, M. C. R., 1978, The hydration of monosaccharides -An NMR study, J. Solution Chem., 7(8):571.CrossRefGoogle Scholar
  67. Hennig, V. H. J., 1977, NMR -Investigations of the role of water for the structure of native starch granules, Starch, 29:1.CrossRefGoogle Scholar
  68. Hennig, V. H. J., and Lechert, H., 1974, Measurements of the magnetic relaxation times of the protons in native starches with different water contents, Starch, 26(7):232.CrossRefGoogle Scholar
  69. Hennig, H. J., and Lechert, H., 1977, DMR study of D~0 in native starches of different origins and amylose of type B, J. Colloid Interface Sci., 62(2):199.CrossRefGoogle Scholar
  70. Hester, R. E., and Quine, D. E. C., 1977, Quantitative analysis of food products by pulsed NMR, Rapid determination of oil and water in flour and feedstuffs, J. Sci. Fd. Agric., 28:624.CrossRefGoogle Scholar
  71. Hoeve, C. A. J., 1980, The structure of water in polymers, in: “Water in Polymers,” Rowland, S. P., (Ed.), ACS Symposium Series 127, American Chemical Society, Washington, DC.Google Scholar
  72. Horman, I., 1984, NMR Spectroscopy, in: “Analysis of Foods and Beverages: Modern Techniques,“ Charalambous, G., (Ed.), Academic Press, New York.Google Scholar
  73. Hsi, E., Vogt, G. F., and Bryant, R. G., 1979, Nuclear magnetic resonance study of water adsorbed on cellulose, J. Colloid and Interface Sci., 70(2):338.CrossRefGoogle Scholar
  74. James, T. L., and Gillen, K. T., 1972, Nuclear magnetic resonance relaxation time and self-diffusion constant of water in hen egg white and yolk, Biochem. Biophys. Acta., 286:10. 13PubMedCrossRefGoogle Scholar
  75. Jane, J. L., 1985, amylose action and C NMR studies on amylose-V complexes and retrograded amylose, Ph.D. Thesis, Iowa State University, Ames, IA.Google Scholar
  76. Jaska, E., 1971, Starch gelatinization as detected by proton magnetic resonance, Cereal Chem., 48:437.Google Scholar
  77. Kalk, A., and Berendsen, H. J. C., 1976, Proton magnetic relaxation and spin diffusion in proteins, J. Magn. Reson., 24:343.CrossRefGoogle Scholar
  78. Kapsalis, J. G., 1981, Moisture sorption hysteresis, in: “Water Activity: Influences on Food Quality,” Rockland, L. B., and Stewart, G. F., (Eds.), Academic Press, New York.Google Scholar
  79. Karel, M., 1975, Physico-chemical modification of the state of water in foods -A speculative survey, in: “Water Relations of Foods,” Duckworth, R. B., (Ed.), Academic Press, New York.Google Scholar
  80. Katayama, S., and Fujiwara, S., 1980, NMR study of the freezing/thawing mechanism of water in polyacrylamide gel, J. Phys. Chem., 84:2320.CrossRefGoogle Scholar
  81. Katz, E. E., and Labuza, T. P., 1981, Effect of water activity on the sensory chrispress and mechanical deformation of snack food products, J. Food Sci., 46:403.CrossRefGoogle Scholar
  82. Kemp, W., 1986, NMR in Chemistry: A Multinuclear Introduction, MacMillian Education Ltd., London.Google Scholar
  83. Kintzinger, J. P., 1983, 0xygen-17 NMR, in: “NMR of Newly Accessible Nuclei, Vol. 2,” Laszlo, P., (Ed.), Academic Press, New York.Google Scholar
  84. Kintzinger, J. P., and Marsmann, H., 1981, 0xygen-17 and Silicon-29, Springer-Verlag, New York.Google Scholar
  85. Kirk, J. R., 1981, Influence of water activity on stability of vitamins in dehydated foods, in: “Water Activity: Influences on Food Quality,” Rockland, L. B., and Stewart, G. E., (Eds.), Academic Press, New York.Google Scholar
  86. Koenig, S. H., Bryant, R. G., Hallenga, K., and Jacobs, G. S., 1978, Magnetic cross-relaxation among protons in protein solutions, Biochemistry, 17:4348.PubMedCrossRefGoogle Scholar
  87. Kose, K., Satoh, K., Inouye, T., and Yasuoka, H., 1985, NMR flow imaging, J. Phys. Soc. Japan, 54:81.CrossRefGoogle Scholar
  88. Kumosinski, T. F., and Pessen, H., 1982, A deuteron and proton magnetic resonance relaxation study of ß-lactoglobulin A association: Some approaches to Scatchard hydration of globular proteins, Arch. Biochem. Biophys., 218(1):286.PubMedCrossRefGoogle Scholar
  89. Kuntz, I. D., 1971, Hydration of macromolecules, IV, Polypeptide conformation in frozen solutions, J. Am. Chem. Soc., 93(2):516.PubMedCrossRefGoogle Scholar
  90. Kuntz, I. D., and Kauzmann, W., 1974, Hydration of protein and polypeptides, Adv. Protein Chem., 28:239.PubMedCrossRefGoogle Scholar
  91. Labuza, T. P., and Busk, G. C., 1979, An analysis of the water binding in gels, J. Food Sci., 44:1379.CrossRefGoogle Scholar
  92. Labuza, T. P., and Saltmarch, M., 1981, The nonenzymatic browning reactions as affected by water in foods, in: “Water Activity: Influences on Food Quality,” Rockland, L. B., and Stewart, G. E., (Eds.), Academic Press, New York.Google Scholar
  93. Lai, H. M., and Richardson, S. J., 1989, Lactose crystallization in skim milk powder observed by hydrodynamic equilibria, scanning electron 2 microscopy and H nuclear magnetic resonance, Accepted, J. Food Sci.Google Scholar
  94. Lambelet, P., Berrocal, R., Desarzens, C., Froehlicher, I., and Ducret, F., 1988, Pulsed low-resolution NMR investigations of protein sols and gels, J. Food Sci., 53(3):943.CrossRefGoogle Scholar
  95. Lang, K. W., and Steinberg, M. P., 1983, Characterization of polymer and solute bound water by pulsed NMR, J. Food Sci., 48:517.CrossRefGoogle Scholar
  96. Laszlo, P., (Ed.), 1983, NMR of Newly Accessible Nuclei, Vol. 1, Academic Press, New York.Google Scholar
  97. Lauterbur, P. C., 1973, Image formation by induced local interactions: Examples employing nuclear magnetic resonance, Nature, 242:190.CrossRefGoogle Scholar
  98. Lechert, H. T., 1981, Water binding on starch: NMR studies on native and gelatinized starch, in: “Water Activity: Influences on Food Quality,” Rockland, L. B., and Stewart, G. F., (Eds.), Academic Press, New York.Google Scholar
  99. Lechert, H., and Hennig, H. J., 1976, NMR investigations on the behavior of water in starches, in: “Magnetic Resonance in Colloid and Interface Science,” Resing, H. A., and Wade, C. G., (Eds.), ACS Symposium Series 34, American Chemical Society, Washington, DC.Google Scholar
  100. Lechert, H., Maiwald, W., Kothe, R., and Basler, W. D., 1980, NMR -Study of water in some starches and vegetables, J. Food Processing and Preservation, 3:275.CrossRefGoogle Scholar
  101. Leistner, L., and Rodel, W., 1976, The stability of intermediate moisture foods with respect to microorganisms, in: “Intermediate Moisture Foods,” Davies, R., Birch, G. G., and Parker, K. J., (Eds.), Applied Science Publishers, Ltd., London.Google Scholar
  102. Lelievre, J., and Creamer, L. K., 1978, An NMR study of the formation and syneresis of renneted milk gels, Milchwissenschaft, 33(2):73.Google Scholar
  103. Lelievre, J., and Mitchell, J., 1975, A pulsed NMR study of some aspects of starch gelatinization, Starch, 27(4):113.CrossRefGoogle Scholar
  104. Leung, H. K., Magnuson, J. A., and Bruinsma, B. L., 1979, Pulsed nuclear magnetic resonance study of water mobility in flour doughs, J. Food Sci., 44:1408.CrossRefGoogle Scholar
  105. Leung, H. K., Magnuson, J. A., and Bruinsma, B. L., 1983, Water binding of wheat flour doughs and breads as studied by deuteron relaxation, J. Food Sci., 48:95.CrossRefGoogle Scholar
  106. Leung, H. K., Steinberg, M. P., Wei, L. S., and Nelson, A. I., 1976, Water binding of macromolecules determined by pulsed NMR, J. Food Sci., 41:297.Google Scholar
  107. Lillford, P. J., Clark, A. H., and Jones, D. V., 1980a, Distribution of water in heterogeneous food and model systems, in: “Water in Polymers,” Cornstock, M. J., (Ed.), ACS Symposium Series 127, American Chemical Society, Washington, D.C.Google Scholar
  108. Lillford, P. J., Jones, D. V., and Rodger, G. W., 1980b, Water in fish, in: “Advances in Fish Science and Technology,” Connell, J. J., (Ed.), Fishing News Books Ltd., England.Google Scholar
  109. Lioutas, T. S., 1984, Interaction among protein, electrolytes and water determined by nuclear magnetic resonance and hydrodynamic equilibria., Ph.D. Thesis, University of Illinois, Urbana.Google Scholar
  110. Lioutas, T. S., Baianu, I. C., and Steinberg, M. P., 1986, 0xygen-17 and deuterium nuclear magnetic resonance studies of lysozyme hydration, Arch. Biochem. Biophys., 247(1):136.CrossRefGoogle Scholar
  111. Lioutas, T. S., Baianu, I. C., and Steinberg, M. P., 1987, Sorption equilibrium and hydration studies of lysozyme: Water activity and 360-MHz proton NMR measurements, J. Agric. Food Chem., 35:133.CrossRefGoogle Scholar
  112. Litchfield, B., 1987, Personal communication, University of Illinois, Urbana.Google Scholar
  113. Lynch, L. J., and Webster, D. S., 1979, An investigation of the freezing of water associated with wool keratin by NMR methods, J. Colloid and Interface Sci., 69(2):238.CrossRefGoogle Scholar
  114. Makower, B., and Dye, W. B., 1956, Equilibrium moisture content and crystallization of amorphous sucrose and glucose, J. Agric. Food Chem., 4:72.CrossRefGoogle Scholar
  115. Mansfield, P., and Maudsley, A. A., 1977, Medical imaging by NMR, J. Br. Radiol., 50:188.CrossRefGoogle Scholar
  116. Mansfield, P., and Morris, P. C., 1982, NMR imaging in biomedicine, in: “Advances in Magnetic Resonance, Suppl. 2,” Waugh, J. S., (Ed.), Academic Press, New York.Google Scholar
  117. Mantsch, H. H., Saito, H., and Smith, I. C. P., 1977, Deuterium magnetic resonance, applications in chemistry, physics and biology, Adv. NMR Spectra, 11(4):211.CrossRefGoogle Scholar
  118. Maquet, J., Thevenau, H., Djabourov, M., and Papon, P., 1984, H NMR study of gelatin gels, Int. J. Biol. Macromol., 6:162.CrossRefGoogle Scholar
  119. Martin, M. L., Delpuech, J. J., and Martin, G. J., 1980, Practical NMR Spectroscopy Chap. 7, Heyden and Son Ltd., London.Google Scholar
  120. Mathur-De Vre, R., 1979, The NMR studies of water in biological systems, Prog. Biophys. Molec. Biol., 35:103.CrossRefGoogle Scholar
  121. Mathur-De Vre, R., Grimee-Declerck, and Lejeune, P., 1982, An NMR study of isotope distribution and the state of water in the hydration layer of DNA, in: “Biophysics of Water,” Franks, F., and Mathias, S. F., (Eds.), John Wiley &Sons, Ltd., New York.Google Scholar
  122. Meiboom, S., 1961, Nuclear magnetic resonance study of the proton transfer in water, J. Chem. Phys., 34(2):375.CrossRefGoogle Scholar
  123. Migchelsen, C., and Berendsen, H. J. C., 1973, Proton exchange and molecular orientation of water in hydrated collagen fibers, An NMR study of H20 and D20, J. Chem. Phys., 59(1):296.CrossRefGoogle Scholar
  124. Mora-Gutierrez, A., and Baianu, I. C., 1987, Physical and chemical studies of structure-functionality relationships of carbohydrate and carbohydrate wheat protein mixtures, Masters Thesis, University of Illinois, Urbana.Google Scholar
  125. Morris, P. G., 1986, Nuclear Magnetic Resonance: Imaging in Medicine and Biology, Clarendon Press, Oxford.Google Scholar
  126. Nagashima, N., and Suzuki, E., 1981, Pulsed NMR and state of water in foods, in: “Water Activity: Influence on Food Quality,” Rockland, L. B., and Stewart, G. F., (Eds.), Academic Press, New York.Google Scholar
  127. Nagashima, N., and Suzuki, E., 1984, Studies of hydration by broad-line pulsed NMR, Appl. Spectroscopy Rev., 20(1):1.CrossRefGoogle Scholar
  128. Nagashima, N., and Suzuki, E., 1985, Computed instrumental analysis of the behavior of water in foods during freezing and thawing, in: “Properties of Water in Foods,” Simatos, D., and Multon, J. L., (Eds.), Martinus Nijhoff Publishers, Boston, MA.Google Scholar
  129. Nakano, H., and Yasui, T., 1976, Denaturation of myosin-ATPase as a function of water activity, Agric. Biol. Chem., 40(1):107.CrossRefGoogle Scholar
  130. Nakano, H., and Yasui, T., 1979, Pulsed nuclear magnetic resonance studies of water in myosin suspension during dehydration, Agric. Biol. Chem., 43:89.CrossRefGoogle Scholar
  131. Nakazawa, F., Takahashi, J., Noguchi, S., and Kato, M., 1980, Water binding in gelatinized nonglutinous and glutinous rice starch determined by pulsed NMR, J. Home Econ. of Japan, 31(8):541.Google Scholar
  132. Nakazawa, F., Takahashi, J., Noguchi, S., and Takada, M., 1983, Pulsed NMR study of water behavior in retrogradation process of rice and rice starch, J. Home Econ. of Japan, 34(9):566.Google Scholar
  133. Nystrom, B., Moseley, M. E., Brown, W., and Roots, J., 1981, Molecular motion of small molecules in cellulose gels studied by NMR, J. Applied Polymer Sci., 26:3385.CrossRefGoogle Scholar
  134. 0’Donnell, M., 1985, NMR blood flow imaging using multiecho phase constrast sequences, Med. Phys., 12:59.PubMedCrossRefGoogle Scholar
  135. Pande, A., 1975, Handbook of Moisture Determination and Control: Principles, Techniques and Applications, Vol. 2, Chap. 7, Marcel Dekker, Inc., New York.Google Scholar
  136. Peemoeller, H., Kydon, D. W., Sharp, A. R., and Schreiner, L. J., 1984, Cross relaxation at the lysozyme-water interface: An NMR line-shape-relaxation correlation study, Can. J. Phys., 62:1002.CrossRefGoogle Scholar
  137. Perez, E., Kavten, R., and McCarthy, M. J., 1989, Noninvasive measurement of moisture profiles during the drying of an apple, in: “Drying ’89,” Mujumdar, A. S., (Ed.), Hemisphere Publishing Co., New York.Google Scholar
  138. Pykett, I. L., Newhouse, J. H., Buonanno, F. S., Brady, T. J., Goldman, M. R., Kistler, J. P., and Pohost, G. M., 1982, Principles of nuclear magnetic resonance imaging, Radiology, 143:157.PubMedGoogle Scholar
  139. Rabideau, S. W., and Hecht, H. G., 1967, 0xygen-17 NMR linewidths as influenced by proton exchange in water, J. Chem. Phys., 47(2):544.CrossRefGoogle Scholar
  140. Redpath, T. W., Norris, D. G., Jones, R. A., and Hutchison, J. M. S., 1984, A new method of NMR flow imaging, Phys. Med. Biol., 29:891.PubMedCrossRefGoogle Scholar
  141. Renou, J. P., Alizon, J., Dohri, M., and Robert, H., 1983, Study of the water-collagen system by NMR cross-relaxation experiments, J. Biochem. Biophys. Methods, 7:91.PubMedCrossRefGoogle Scholar
  142. Richardson, S. J., 1988a, Molecular mobilities of instant starch gels determined by oxygen-17 and carbon-13 nuclear magnetic resonance as affected by concentration and storage conditions, J. Food Sci., 53(4):1175.CrossRefGoogle Scholar
  143. Richards, R. E., and Franks, F., (Eds.), 1977, A discussion on water structure and transport in biology, Phil. Trans. R. Soc. Lond. B., 278:1.Google Scholar
  144. Richardson, S. J., 1988b, Determination of moisture by pulsed nuclear magnetic resonance, NMR Short Course at the American Oil Chemists Society Annual Meeting, May 3–6, Phoenix, AZ.Google Scholar
  145. Richardson, S. J., 1989, Contribution of proton exchange to the oxygen-17 nuclear magnetic resonance transverse relaxation rate in water and starch-water systems, Cereal Chem., 66(3):244.Google Scholar
  146. Richardson, S. J., Baianu, I. C., and Steinberg, M. P., 1985, Relation between oxygen-17 NMR and rheological characteristics of wheat flour suspensions, J. Food Sci., 50:1148.CrossRefGoogle Scholar
  147. Richardson, S. J., Baianu, I. C., and Steinberg, M. P., 1986, Mobility of water in wheat flour suspensions as studied by proton and oxygen-17 nuclear magnetic resonance, J. Agric. Food Chem., 34(1):17.CrossRefGoogle Scholar
  148. Richardson, S. J., Baianu, I. C., and Steinberg, M. P., 1987a, Mobility of water in starch powders by nuclear magnetic resonance, Starch, 39(6):198.CrossRefGoogle Scholar
  149. Richardson, S. J., Baianu, I. C., and Steinberg, M. P., 1987b, Mobility of water in starch-sucrose systems determined by deuterium and oxygen-17 nuclear magnetic resonance, Starch, 39(9):302.CrossRefGoogle Scholar
  150. Richardson, S. J., Baianu, I. C., and Steinberg, M. P., 1987c, Mobility of water in sucrose solutions determined by deuterium and oxygen-17 nuclear magnetic resonance measurements, J. Food Sci., 52(3):806.CrossRefGoogle Scholar
  151. Richardson, S. J., Baianu, I. C., and Steinberg, M. P., 1987d, Mobility of water in corn starch suspensions determined by nuclear magnetic resonance, Starch, 39(3):79.CrossRefGoogle Scholar
  152. Richardson, S. J., and Steinberg, M. P., 1987, Applications of nuclear magnetic resonance, in: “Water Activity: Theory and Applications to Foods,” Rockland, L. B., and Beuchat, L. R., (Eds.), Marcel Dekker, Inc., New York.Google Scholar
  153. Ridgway, J. P., and Smith, M. A., 1986, A technique for velocity imaging using magnetic resonance imaging, Br. J. Radiol., 59:603.PubMedCrossRefGoogle Scholar
  154. Rodger, C., Sheppard, N., McFarlane, C., and McFarlane, W., 1978, Group VI -Oxygen, sulfur, selenium and tellurium, in: “NMR and the Periodic Table,” Harris, R. K., and Mann, B. E., (Eds.), Academic Press, New York.Google Scholar
  155. Rollwitz, W., 1985, Using radiofrequency spectroscopy in agricultural applications, Agric. Engr., May :12.Google Scholar
  156. Rothwell, W. P., 1985, Nuclear magnetic resonance imaging, Applied Optics, 24(23):3958.CrossRefGoogle Scholar
  157. Rothwell, W. P., and Gentempo, P. P., 1984, Concepts in nonmedical applications of NMR imaging, Paper MD1-1, Topical Meeting on Industrial Applications of Computed Tomography and NMR Imaging, Optical Society of America, Aug. 13 and 14, Hecla Island, Manitoba, Canada.Google Scholar
  158. Rothwell, W. P., and Gentempo, P. P., 1985, Nonmedical applications of NMR imaging, Bruker Reports, 1:46.Google Scholar
  159. Rothwell, W. P., Holecek, D. R., and Kershaw, J. A., 1984, NMR Imaging: Study of fluid absorption by polymer composites, J. Polymer Sci., Polymer Letters Edition, 22:241.CrossRefGoogle Scholar
  160. Rothwell, W. P., and Vinegar, H. J., 1985, Petrophysical applications of NMR imaging, Applied Optics, 24(23):3969.CrossRefGoogle Scholar
  161. Saenger, W., 1987, Structure and dynamics of water surrounding biomole-cules, Ann. Rev. Biophys. Biophys. Chem., 16:93.CrossRefGoogle Scholar
  162. Saltmarch, M., and Labuza, T. P., 1980, Influence of relative humidity on the physicochemical state of lactose in spray-dried sweet whey powders, J. Food Sci., 45:1231.CrossRefGoogle Scholar
  163. Samuelsson, E. G., and Hueg, B., 1973, Nuclear magnetic resonance (NMR) as a method for measuring the rate of solution of dried milk, Milchwissenschaft, 28(6):329.Google Scholar
  164. Schwier, V. I., and Lechert, H., 1982, X-ray and nuclear magnetic resonance investigations on some structure problems of starch, Starch, 34(1):11.Google Scholar
  165. Shih, J. M., 1983, Determination of the oil and water content of rice by pulsed NMR, IBM Instruments, Inc., Danbury, CT.Google Scholar
  166. Steinberg, M. P., and Leung, H., 1975, Some applications of wide-line and pulsed NMR investigations of water in foods, in: “Water Relations of Foods,” Duckworth, R. B., (Ed.), Academic Press, New York.Google Scholar
  167. Stilbs, P., 1987, Fourier transform pulsed-gradient spin-echo studies of molecular diffusion, Progress in NMR Spectroscopy, 19:1.CrossRefGoogle Scholar
  168. Stokes, H. T., 1984, Study of diffusion in solids by pulsed nuclear magnetic resonance, in: “Nontraditional Methods in Diffusion,” Murch, G. E., Birnbaum, H. K., and Cost, J. R., (Eds.), The Metallurgical Society of AIME, New York.Google Scholar
  169. Suggett, A., 1976, Molecular motion and interactions in aqueous carbohydrate solutions, III, A combined nuclear magnetic and dielectric-relaxation strategy, J. Solution Chem., 5(1):33.CrossRefGoogle Scholar
  170. Suggett, A., Ablett, S., and Lillford, P. J., 1976, Molecular motion and interactions in aqueous carbohydrate solutions, II, Nuclear-magnetic-relaxation studies, J. Solution Chem., 5(1):17.CrossRefGoogle Scholar
  171. Suzuki, E., and Nagashima, N., 1982, Freezing-thawing hysteresis phenomena of biological systems by the new method of proton magnetic resonance, Bull. Chem. Soc. Jpn., 55(9):2730.CrossRefGoogle Scholar
  172. Suzuki, T., 1981, State of water in sea food, in: “Water Activity: Influences on Food Quality,” Rockland, L. B., and Stewart, G. F., (Eds.), Academic Press, New York.Google Scholar
  173. Tait, M. J., Ablett, S., and Franks, F., 1972a, An NMR investigation of water in carbohydrate systems, in: “Water Structure at the Water-Polymer Interface,” Jellinck, H. H. G., (Ed.), Plenum Press, New York.Google Scholar
  174. Tait, M. J., Ablett, S., and Wood, F. W., 1972b, The binding of water on starch, an NMR investigation, J. Colloid and Interface Sci., 41(3):594.CrossRefGoogle Scholar
  175. Tait, M. J., Suggett, A., Franks, F., Ablett, S., and Quickenden, P. A., 1972c, Hydration of monosaccharides: A study by dielectric and nuclear magnetic relaxation, J. Solution Chem., 1(2):131.CrossRefGoogle Scholar
  176. Troller, J. A., 1985, Effect of a and pH on growth and survival of Staphylococcus aureus, in: “Properties of Water in Foods,” Simatos, D., and Multon, J. L., (Eds.), Martinus Nijhoff Publishers, Boston, MA.Google Scholar
  177. Trumbetas, J., Fioriti, J. A., and Sims, R. J., 1976, Application of pulsed NMR to fatty emulsions, JAOCS, 53:722.CrossRefGoogle Scholar
  178. Trumbetas, J., Fioriti, J. A., and Sims, R. J., 1977, Nuclear magnetic resonance (NMR), JAOCS, 54:433.CrossRefGoogle Scholar
  179. Trumbetas, J., Fioriti, J. A., and Sims, R. J., 1978, Use of pulsed nuclear magnetic resonance to predict emulsion stability, JAOCS, 55:248.CrossRefGoogle Scholar
  180. Tyrrell, H. J. V., and Harris, K. R., 1984, Diffusion in Liquids: A Theoretical and Experimental Study, Chapter 5, Butterworth and Co. Publishers, Ltd., Boston, MA.Google Scholar
  181. Urbanski, G. E., 1981, Rheological properties of soybean and soybean-solute systems, Ph.D. Thesis, University of Illinois, Urbana.Google Scholar
  182. Van den Berg, C., and Bruin, S., 1981, Water activity and its estimation in food systems: Theoretical aspects, in: “Water Activity: Influences on Food Quality,” Rockland, L. B., and Stewart, G. F., (Ed.), Academic Press, New York.Google Scholar
  183. Vinegar, H. J., 1986, X-ray CT and NMR imaging of rocks, J. Petroleum Technology, March :257.Google Scholar
  184. von Meerwall, E. D., 1983, Self-diffusion in polymer systems, measured with field-gradient spin-echo NMR methods, Advances in Polymer Sci., 54:1.CrossRefGoogle Scholar
  185. von Meerwall, E. D., 1985, Pulsed and steady field gradient NMR diffusion measurements in polymers, Rubber Chem. and Technology, 58:527.CrossRefGoogle Scholar
  186. Walmsley, R. H., and Shporer, M., 1978, Surface-induced NMR line splittings and augmented relaxation rates in water, J. Chem. Phys., 68(6):2584.CrossRefGoogle Scholar
  187. Wang, J. H., 1954, Theory of the self-diffusion of water in protein solutions, A new method for studying the hydration and shape of protein molecules, J. Am. Chem. Soc., 76:4755.CrossRefGoogle Scholar
  188. Weisser, H., 1980, NMR-Techniques in studying bound water in foods, in: “Food Process Engineering Vol. 1; Food Processing Systems,” Linko, P., Malkki, Y., Olkku, J., and Larinkari, J., (Eds.), Applied Science Pub. Ltd., London.Google Scholar
  189. Woessner, D. E., Snowden, B. S., and Chiu, Y. C., 1970, Pulsed NMR study of the temperature hysteresis in the agar-water system, J. Colloid and Interface Sci., 34(2):283.CrossRefGoogle Scholar
  190. Woodhouse, D. R., 1974, NMR in systems of biological significance, Ph.D. Thesis, University of Nottingham.Google Scholar
  191. Yasui, T., Ishioroshi, M., Nakano, H., and Samejima, K., 1979, Changes in shear modulus, ultrastructure and spin-spin relaxation times of water associated with heat-induced gelation of myosin, J. Food Sci., 44:1201.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Shelly J. Richardson Schmidt
    • 1
  1. 1.Division of Foods and NutritionUniversity of IllinoisUrbanaUSA

Personalised recommendations