Carbohydrate Stereochemistry, and NMR Spectroscopy

  • Arthur S. Perlin
Part of the Basic Life Sciences book series (BLSC, volume 56)


This opening presentation is intended to draw attention to several aspects of carbohydrate stereochemistry that can profitably be examined by NMR spectroscopy which, as a consequence, has contributed abundantly to modern developments in the carbohydrate field. Some of the NMR applications are to be treated in greater depth by other participants in this symposium. Measurements of chemical shift, spin-spin coupling, relaxation parameters, and nuclear Overhauser enhancement are all utilized for the purpose. Among the kinds of stereochemical information accessible from NMR data are: configurational assignment, molecular conformation (including solvent influences), a comparison of solution and solid state conformations, orientation of substituent groups, and the geometry of interactions between a carbohydrate and other species. Examples of several of these are cited from our own work, and emphasis is given to certain observations that, although widely recognized for some time, are not well understood. Hopefully, this reminder will stimulate a further assessment, and a clarification, of those points.


Rotational Isomerism Nuclear Overhauser Enhancement Configurational Assignment Stereochemical Information Solid State Conformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. S. Perlin, B. Casu, and H. J. Koch, 1970, Can. J. Chem., 48:2596CrossRefGoogle Scholar
  2. 1a.
    H. J. Koch, and A. S. Perlin, 1970, Carbohydr. Res., 15:403CrossRefGoogle Scholar
  3. 1b.
    A. S. Perlin, 1976, MTP Int. Rev. Sci. Org. Chem. Ser., One, 7:1.Google Scholar
  4. 2.
    R. U. Lemieux, and J. D. Stevens, 1966, Can. J. Chem., 44:249.CrossRefGoogle Scholar
  5. 3.
    A. S. Perlin, and H. J. Koch, 1970, Can. J. Chem., 48:2639.CrossRefGoogle Scholar
  6. 4.
    D. K. Dalling, and D. M. Grant, 1967, J. Am. Chem. Soc, 86:6612CrossRefGoogle Scholar
  7. 4a.
    D. M. Grant, and B. V. Cheney, 1967, J. Am. Chem. Soc., 89:5315.CrossRefGoogle Scholar
  8. 5.
    H. J. Schneider, and V. Hoppen, 1974, Tetrahedron Lett., 579.Google Scholar
  9. 6.
    H. Beierbeck, and J. K. Saunders, 1976, Can. J. Chem., 54:2985.CrossRefGoogle Scholar
  10. 7.
    D. G. Gorenstein, 1977, J. Am. Chem. Soc., 99:2254.CrossRefGoogle Scholar
  11. 8.
    Q. -J. Peng, and A. S. Perlin, 1987, Carbohydr. Res., 160:57CrossRefGoogle Scholar
  12. 8a.
    P. Dais, and A. S. Perlin, 1982, Carbohydr. Res., 100:103.CrossRefGoogle Scholar
  13. 9.
    A. S. Perlin, N. Cyr, H. J. Koch, B. Korsch,1973, Ann. N.Y. Acad. Sci., 222:935PubMedCrossRefGoogle Scholar
  14. 9a.
    R. G. S. Ritchie, N. Cyr, B. Korsch, H. J. Koch, and A. S. Perlin, 1975, Can. J. Chem., 53:1424CrossRefGoogle Scholar
  15. 9b.
    A. S. Perlin, 1977, Isotopes in Org. Chem., E. Buncel, and C. C. Lee, ed., Elsevier, 3:229Google Scholar
  16. 9c.
    N. Cyr, and A. S. Perlin, 1979, Can. J. Chem., 57:2504.CrossRefGoogle Scholar
  17. 10.
    M. M. Abdel-Malik, Q. -J. Peng, and A. S. Perlin, 1987, Carbohydr. Res., 159:11.CrossRefGoogle Scholar
  18. 11.
    D. M. Mackie, A. Maradufu, and A. S. Perlin, 1986, Carbohydr. Res., 150:23.CrossRefGoogle Scholar
  19. 12.
    R. Glaser, and A. S. Perlin, 1988, Carbohydr. Res., 182:169.CrossRefGoogle Scholar
  20. 13.
    R. Glaser, Q. -J. Peng, and A. S. Perlin, 1988, J. Org. Chem., 53:2172.CrossRefGoogle Scholar
  21. 14.
    A. S. Perlin, and B. Casu, 1969, Tetrahedron, Lett., 2921Google Scholar
  22. 14a.
    J. A. Schwarcz, and A. S. Perlin, 1972, Can. J. Chem., 50:3667CrossRefGoogle Scholar
  23. 14b.
    K. Bock, J. Lundt, and C. Pederson, 1974, J. Chem. Soc. Perkin, Trans., 2:293.Google Scholar
  24. 15.
    J. Auge, and S. David, 1976, Nouv. J. Chim., 1:57.Google Scholar
  25. 16.
    J. E. N. Shin, and A. S. Perlin, 1979, Carbohydr. Res., 76:165CrossRefGoogle Scholar
  26. 16a.
    V. S. Rao, and A. S. Perlin, 1981, Carbohydr. Res., 92:141.CrossRefGoogle Scholar
  27. 17.
    J. A. Schwarcz, N. Cyr, and A. S. Perlin, 1975, Can. J. Chem., 53:1872CrossRefGoogle Scholar
  28. 17a.
    N. Cyr, G. K. Hamer, and A. S. Perlin, 1978, Can. J. Chem., 56:297.CrossRefGoogle Scholar
  29. 18.
    F. Sauriol, and A. S. Perlin, unpublished.Google Scholar
  30. 19.
    A. S. Perlin, 1966, Can. J. Chem., 44:539CrossRefGoogle Scholar
  31. 19a.
    B. Casu, M. Reggiani, G. G. Gallo, and A. Vigevani, 1964, Tetrahedron Lett., 2839.Google Scholar
  32. 20.
    A. S. Perlin, R. G. S. Ritchie, and A. Parfondry, 1974, Carbohydr. Res., 37:C1CrossRefGoogle Scholar
  33. 20a.
    A. Parfondry, N. Cyr, and A. S. Perlin, 1977, Carbohydr. Res., 59:299CrossRefGoogle Scholar
  34. 20b.
    G. K. Hamer, F. Balza, N. Cyr, and A. S. Perlin, 1987, Can. J. Chem., 56:3109.CrossRefGoogle Scholar
  35. 21.
    P. Dais, T. K. M. Shing, and A. S. Perlin, 1984, J. Am. Chem. Soc., 106:3082.CrossRefGoogle Scholar
  36. 22.
    R. Glaser, and A. S. Perlin, unpublished.Google Scholar
  37. 23.
    P. Dais, and A. S. Perlin, 1988, Magn. Reson. Chem., 26:373.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Arthur S. Perlin
    • 1
  1. 1.Department of ChemistyMcGill UniversityMontrealCanada

Personalised recommendations