Advertisement

Uptake, Metabolism, and Storage of Phosphate and Nitrogen in Plant Cells; an NMR Perspective

  • Hans J. Vogel
  • Peter Lundberg
Part of the Basic Life Sciences book series (BLSC, volume 56)

Abstract

A number of Nuclear Magnetic Resonance (NMR) Spectroscopy techniques can be used to study pH regulation and various aspects of nutrient metabolism in plant material. In this study phosphorus-31 NMR has been used to determine the energy state (ATP) and the intracellular cytoplasmic and vacuolar pH of cultured plant cells and algae. For the algae it was found that the chemical shift of the terminal polyphosphate resonance provided a good monitor of the vacuolar pH which was estimated at pH 5.5. A cytoplasmic pH of 7.2 was determined from the chemical shifts of the Pi and glucose-6-phosphate resonances. Phosphate uptake could also be followed by 31P NMR and these studies showed that Pi was stored as polyphosphates in algae, but as vacuolar Pi in certain higher plants such as Catharanthus roseus and Nicotiana tabacum.

Keywords

Nuclear Magnetic Resonance Nuclear Magnetic Resonance Spectrum Nuclear Magnetic Resonance Study Amino Acid Pool Nuclear Magnetic Resonance Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belton, P. S., Lee, R. B., and Ratcliffe, R. G., 1985, J. Exp. Bot., 36:190.CrossRefGoogle Scholar
  2. Bental, M., Degani, H., and Avron, M., 1988, Plant Physiol., 87:813.PubMedCrossRefGoogle Scholar
  3. Bental, M., Oren-Shamir, M., Avron, M., and Degani, H., 1988, Plant Physiol., 87:320.PubMedCrossRefGoogle Scholar
  4. Brodelius, P., and Vogel, H. J., 1985, J. Biol. Chem., 260:3556.PubMedGoogle Scholar
  5. Chang, K., and Roberts, J. K. M., 1989, Plant Physiol., 89:197.PubMedCrossRefGoogle Scholar
  6. Choi, B. S., and Roberts, M. F., 1985, Biochem. Biophys. Acta, 928:259–265.Google Scholar
  7. Cohen, S. M., Ed., 1987, “Physiological NMR Spectroscopy: From isolated Cells to Man,” Ann. N.Y. Acad. Sci., 508:1.Google Scholar
  8. Derome, A. E., 1987, “Modern NMR Techniques for Chemistry Research,” Pergamon Press, Oxford, 129–153.Google Scholar
  9. Dijkema, C., DeVries, S. C., Booij, H., Schaafsma, T. J., and vanKammen, A., 1988, Plant Physiol., 88:1332.PubMedCrossRefGoogle Scholar
  10. Fan, T. W. -M., Higashi, R. M., and Lane, A. N., 1986, Arch. Biochem. Biophys., 251:674.PubMedCrossRefGoogle Scholar
  11. Fan, T. W. -M., Higashi, R. M., and Lane, A. N., 1988, Arch. Biochem. Biophys., 266:592.PubMedCrossRefGoogle Scholar
  12. Foyer, C., Walker, D., Spencer, C., and Mann, B., 1982, Biochem. J., 202:429.PubMedGoogle Scholar
  13. Gadian, D. G., 1983, Annu. Rev. Biochem. Biophys. Bioeng., 12:69.CrossRefGoogle Scholar
  14. Gadian, D. G., and Radda, G. K., 1981, Annu. Rev. Biochem., 50:69.PubMedCrossRefGoogle Scholar
  15. Gerasimowicz, W. V., Tu, S. -I., and Pfeffer, P. E., 1986, Plant Physiol., 81:925.PubMedCrossRefGoogle Scholar
  16. Gimmler, H., Kugel, H., Leibfritz, D., and Mayer, A., 1988, Physiol. Plant, 74:521.CrossRefGoogle Scholar
  17. Guern, J., Mathieu, Y., Kurkdijan, A., Manigault, P., Manigault, J., Gillet, B., Beloeil, J. -C., and Lallemand, J. -Y., 1989, Plant Physiol., 89:27.PubMedCrossRefGoogle Scholar
  18. Gupta, R. K., Gupta, P., and Moore, R.D., 1984, Annu. Rev. Biophys. Bioeng., 13:221.PubMedCrossRefGoogle Scholar
  19. Haran, N., Kahana, Z. E., and Lapidot, A., 1983, J. Biol. Chem., 258:12929.PubMedGoogle Scholar
  20. Harder, W., and Dijkhuizen, L., 1983, Annu. Rev. Microbiol., 37:1.PubMedCrossRefGoogle Scholar
  21. Hellstrand, P., and Vogel, H. J., 1985, Am. J. Physiol., 248:C320.PubMedGoogle Scholar
  22. Hooks, M. A., Clark, R. A., Nieman, R. H., and Roberts, J. K. M., 1989, Plant Physiol., 89:963.PubMedCrossRefGoogle Scholar
  23. Hoult, D. I., Busby, S. J. W., Gadan, D. G., Radda, G. K., Richards, R. E., and Seeley, P. J., 1974, Nature, 252:285.PubMedCrossRefGoogle Scholar
  24. Ingwall, J. S., 1982, Am. J. Physiol., 242:H729.PubMedGoogle Scholar
  25. Juretscke, H. P., 1984, FEBS Lett., 178:123.CrossRefGoogle Scholar
  26. Kanamori, K., and Roberts, J. D., 1983, Acc. Chem. Res., 16:35.CrossRefGoogle Scholar
  27. Kanamori, K., Weiss, R. L., and Roberts, J. D., 1988, J. Biol. Chem., 263:2817.PubMedGoogle Scholar
  28. Kime, M. J., Ratcliffe, R. G., Williams, R. J. P., and Loughman, B. C., 1982, J. Exp. Bot., 33:656.CrossRefGoogle Scholar
  29. Kugel, H., Mayer, A., Kirst, G. O., and Leibfritz, D., 1987, Eur. J. Biophys., 14:461.CrossRefGoogle Scholar
  30. Legerton, T. L., Kanamori, K., Weiss, R. L., and Roberts, J. D., 1983, Biochemistry, 22:899.PubMedCrossRefGoogle Scholar
  31. Leighton, P., and Lu, P., 1987, Biochemistry, 26:7262.PubMedCrossRefGoogle Scholar
  32. Live, D. H., Davis, D. G., Agosta, W. C., and Cowburn, D., 1984, J. Am. Chem. Soc., 106:6104.CrossRefGoogle Scholar
  33. Lundberg, P., 1989, Ph.D. Thesis, Univ. of Calgary.Google Scholar
  34. Lundberg, P., Weich, R. G., Jensen, P., and Vogel, H. J., 1989, Plant Physiol., 89:1380.PubMedCrossRefGoogle Scholar
  35. Martin, F., 1985a, Physiol. Veg., 23:463.Google Scholar
  36. Martin, F., 1985b, FEBS. Lett., 182:350.CrossRefGoogle Scholar
  37. Martin, J. B., Bligny, R., Rebeille, F., Douce, R., Lequay, J., Mathieu, Y., and Guern, J., 1982, Plant Physiol., 70:1156.PubMedCrossRefGoogle Scholar
  38. Mathieu, Y., Guern, J., Kurkdjian, A., Manigault, P., Manigault, J., Zielinska, T., Gillet, B., Beloeil, J. -C., and Lallemand, J. -Y., 1989, Plant Physiol., 89:19.PubMedCrossRefGoogle Scholar
  39. Mclntyre, D. D., Apblett, A., Lundberg, P., Schmidt, K., and Vogel, H. J., 1989, J. Magn. Reson., 83:377.Google Scholar
  40. Mimuro, T., and Kirino, Y., 1984, Plant Cell Physiol., 25:813.Google Scholar
  41. Mitsumiro, F., and Ito, O., 1984, FEBS Lett., 174:248.CrossRefGoogle Scholar
  42. Monselise, E. B. I., Kost, D., Porath, D., and Tal, M., 1987, New Phytol., 107:341.CrossRefGoogle Scholar
  43. Moon, R. D., and Richards, J. M., 1973, J. Biol. Chem., 248:7276.PubMedGoogle Scholar
  44. Morris, P. G., 1988, Annu. Rep. NMR Spectr., 20:1.CrossRefGoogle Scholar
  45. Nicolay, K., Scheffers, W. A., Bruinenberg, P. M., and Kaptein, R., 1982, Arch. Microbiol., 133:83.CrossRefGoogle Scholar
  46. Nicolay, K., Scheffers, W. A., Bruinenberg, P. M., and Kaptein, R., 1983, Arch. Microbiol., 134:270.PubMedCrossRefGoogle Scholar
  47. Oaks, A., and Hirel, B., 1985, Annu. Rev. Plant Physiol., 36:345.CrossRefGoogle Scholar
  48. Pahlich, E., Kerres, R., and Jager, H. J., 1983, Plant Physiol., 72:590.PubMedCrossRefGoogle Scholar
  49. Parry, D. L., 1986, Mar. Biol., 87:219.CrossRefGoogle Scholar
  50. Rhodes, D., Myers, A. C., and Jamieson, G., 1981, Plant Physiol., 68:1197.PubMedCrossRefGoogle Scholar
  51. Rhodes, D., Rich, P. J., and Brunk, D. G., 1989, Plant Physiol., 89:1161.PubMedCrossRefGoogle Scholar
  52. Richards, R. E., and Thomas, N. E., 1974, J. Chem. Soc., Perkins II, 368.CrossRefGoogle Scholar
  53. Roberts, J. K. M., 1984, Annu. Rev. Plant Physiol., 35:375.CrossRefGoogle Scholar
  54. Roberts, J. K. M., Ray, P. M., Wade-Jardetzky, N., and Jardetzky, O., 1980, Nature, 283:870.CrossRefGoogle Scholar
  55. Schaefer, J. O., Stetsjkal, O., and Beard, F., 1975, Plant Physiol., 155:1048.CrossRefGoogle Scholar
  56. Sianoudis, J., Kusel, A. C., Mayer, A., Grimme, L. H., and Leibfritz, D., 1986, Arch. Microbiol., 144:48.CrossRefGoogle Scholar
  57. Sianoudis, J., Kusel, A. C., Mayer, A., Grimme, L. H., and Leibfritz, D., 1987, Arch. Microbiol., 147:25.CrossRefGoogle Scholar
  58. Sillerud, L. O., and Heyser, J. W., 1984, Plant Physiol., 75:269.PubMedCrossRefGoogle Scholar
  59. Sims, A. P., and Folkes, B. F., 1964, Proc. Roy. Soc. B., 159:479.CrossRefGoogle Scholar
  60. Skokut, T., Wolk, C. P., Thomas, J., Meeks, P. V., and Shaffer, P. W., 1978, Plant Physiol., 62:299.PubMedCrossRefGoogle Scholar
  61. Smith, G. M., Yu, L. P., and Domingues, D. J., 1987, Biochemistry, 26:2702.Google Scholar
  62. Springer, C. S., 1987, Annu. Rev. Biophys. Chem., 16:375.CrossRefGoogle Scholar
  63. Stidham, M. A., Moreland, D. E., and Siedow, J. N., 1983, Plant Physiol., 73:517.PubMedCrossRefGoogle Scholar
  64. Thomae, W. J., and Gleason, F. K., 1987, Biochemistry, 26:2510.CrossRefGoogle Scholar
  65. Thomas, T. H., and Ratcliffe, R. G., 1985, Physiol. Plant, 63:284.CrossRefGoogle Scholar
  66. Thorpe, T., Bagh, K., Cutler, A. J., Dunstan, D. I., Mclntyre, D. D., and Vogel, H. J., 1989, Plant Physiol., 91:193.PubMedCrossRefGoogle Scholar
  67. Torchia, D. A., Sparks, S. W., and Bax, A., 1988, Biochemistry, 27:5135.PubMedCrossRefGoogle Scholar
  68. Vogel, H. J., 1987, Ann. N.Y. Acad. Sci., 508:164.CrossRefGoogle Scholar
  69. Vogel, H. J., and Brodelius, P., 1984, J. Biotechn., 1:159.CrossRefGoogle Scholar
  70. Vogel, H. J., Brodelius, P., Lilja, H., and Lohmeier-Vogel, E. M., 1987, Meth. in Enzymol., 135:512.CrossRefGoogle Scholar
  71. Watanabe, M., Kohata, K., and Kunugi, M., 1987, J. Phycol., 23:54.CrossRefGoogle Scholar
  72. Waterton, J. C., Bridges, I. G., and Irving, M. P., 1983, Biochem. Biophys. Acta., 763:315.CrossRefGoogle Scholar
  73. Weich, R., Lundberg, P., Vogel, H.J., and Jensen, P., 1989, Plant Physiol., 90:320.CrossRefGoogle Scholar
  74. Wray, V., Schiel, O., and Berlin, J., 1983, Z. Pflanzenphysiol, 112:215.Google Scholar
  75. Yazaki, Y., Mahi, K., Sato, T., Ohta, E., and Sakata, M., 1988, Plant Cell Physiol., 29:1417.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Hans J. Vogel
    • 1
  • Peter Lundberg
  1. 1.Department of Biological SciencesUniversity of CalgaryCalgaryCanada

Personalised recommendations