Carbon-13 NMR Studies of Native, Gelled, Heat-and Chemically-Denatured Soy Glycinin and β-Conglycinin at Neutral pH

  • M. S. Fisher
  • W. E. Marshall
  • H. F. MarshallJr.
Part of the Basic Life Sciences book series (BLSC, volume 56)


Nuclear Magnetic Resonance Spectroscopy (NMR) is a powerful tool for obtaining both gross structural and microenvironmental information about proteins. NMR studies of food proteins from seeds have emphasized the alcohol-extractable proteins (prolamines) from cereal grains. The NMR characteristics of corn zein (Augustine and Baianu 1986, 1987), wheat glutenins and gliadins (Baianu, 1981; Baianu et al., 1982), wheat gluten (Belton et al., 1987) and C hordein from barley (Tatham et al., 1985) have been studied. None of these studies has investigated the aqueous salt-extractable proteins of cereal grains or oilseeds by NMR.


Nuclear Magnetic Resonance Nuclear Magnetic Resonance Study Chemical Denaturation Peak Envelope Amino Acid Sidechains 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Augustine, M. E., and Baianu, I. C., 1986, “High-resolution Carbon-13 Nuclear Magnetic Resonance Studies of Maize Proteins,” J. Cereal Sci., 4:371–78.CrossRefGoogle Scholar
  2. Augustine, M. E., and Baianu, I. C., 1987, “Basic Studies of Corn Proteins for Improved Solubility and Future Utilization: A Physicochemical Approach,” J. Food Sci., 52(3):649–52.CrossRefGoogle Scholar
  3. Badley, R. A., Atkinson, D., Hauser, H., Oldani, D., Green, J. P., and Stubbs, J. M., 1975, “The structure, physical and chemical properties of the soy bean protein glycinin,” Biochim. Biophys. Acta., 412:214.PubMedGoogle Scholar
  4. Baianu, I. C., 1981, “Carbon-13 and Proton Nuclear Magnetic Resonance Studies of Wheat Proteins. Spectral Assignments for Flanders Gliadins in Solution,” J. Sci. Food Agric., 32:309–313.CrossRefGoogle Scholar
  5. Baianu, I. C., Johnson, L. F., and Waddell, D. K., 1982, “High-Resolution Proton, Carbon-13 and Nitrogen-15 Nuclear Magnetic Resonance Studies of Wheat Proteins at High Magnetic Fields: Spectral Assignments. Changes with Concentration and Heating Treatments of Flinor Gliadins in Solution-Comparison with Gluten Spectra,” J. Sci. Food Agric., 33:373–383.CrossRefGoogle Scholar
  6. Baianu, I. C., 1989, High-Resolution NMR Studies of Food Proteins, in: “NMR in Agriculture,” P. Pfeffer and W. Gerasimowcz, eds.; CRC Press, Cleveland, Ohio.Google Scholar
  7. Baillargeon, M. W., Laskowski, Jr., M., Neves, D. E., Porubcan, M. A., Santini, R. E., and Markley, J. L., 1980, “Soybean trypsin inhibitor (Kunitz) and its complex with trypsin. Carbon-13 nuclear magnetic resonance studies of the reactive site arginine,” Biochemistry, 19:5703–10.PubMedCrossRefGoogle Scholar
  8. Belton, P. S., Duce, S. L., and Tatham, A. S., 1987, “ 13C solution state and solid state n.m.r. of wheat gluten,” Int. J. Biol. Macromol., 9:357–63.CrossRefGoogle Scholar
  9. Chothia, C., 1976, “The nature of the accessible and buried surfaces in proteins,” J. Mol. Biol., 105:1–14.PubMedCrossRefGoogle Scholar
  10. Coates, J. B., Medeiros, J. S., Thanh, V. H., and Nielsen, N. C., 1985, “Characterization of Subunits of β-Conglycinin,” Arch. Biochem. Biophys., 243(1):184–194.PubMedCrossRefGoogle Scholar
  11. Coker, III, G. T., Garbow, J. R., and Schaefer, J., 1987, “Nitrogen-15 and carbon-13 NMR determination of methionine metabolism in developing soybean cotyledons,” Plant Physiol., 83(3):698–702.PubMedCrossRefGoogle Scholar
  12. Dev, S. B., Keller, J. T., and Rha, C. K., 1988, “Secondary structure of 11 S globulin in aqueous solution investigated by FT-IR derivative spectroscopy,” Biochem. Biophys. Acta, 957:272–280.PubMedCrossRefGoogle Scholar
  13. Fisher, M. S., Marshall, W. E., and Marshall, Jr., H. F., 1989a, “Carbon-13 NMR Studies of Glycinin and β-Conglycinin at Neutral pH,” J. Agric. Food Chem., (in press).Google Scholar
  14. Fisher, M. S., Marshall, W. E., and Marshall, Jr., H. F., 1989b, “Carbon-13 NMR Studies of the Effects of Gelation, Heat and Chemical Denaturation at Neutral pH of Glycinin and β-Conglycinin,” J. Agric. Food Chem., (in press).Google Scholar
  15. Hermansson, A-M., 1978, “Physico-chemical aspects of soy protein structures formation,” J. Texture Stud., 9:33–58.CrossRefGoogle Scholar
  16. Hermansson, A-M., 1985, “Structure of Soya Glycinin and Conglycinin Gels,” J. Sci Food Agric., 36:822–832.CrossRefGoogle Scholar
  17. Hermansson, A-M., 1986, “Soy Protein Gelation,” J. Am. Oil Chem. Soc., 63(5):658–666.CrossRefGoogle Scholar
  18. Howarth, O. W., and Lilley, D. M. J., 1978, “Carbon-13-NMR of Peptides and Proteins,” Prog. Nucl. Magn. Reson. Spectros., 12:1–40.CrossRefGoogle Scholar
  19. Ishino, K., and Kudo, S., 1980, “Conformational Transition of Alkali-Denatured Soybean 7S and 11S Globulins by Ethanol,” Agric. Biol. Chem., 44(3):537–543.CrossRefGoogle Scholar
  20. Jardetzky, O., and Roberts, G. C. K., 1981, Protein Dynamics, in: “NMR in Molecular Biology,” O. Jardetzky, and G. C. K. Roberts, eds.; Academic Press, New York.Google Scholar
  21. Kakalis, L. T., and Baianu, I. C., 1985, “Carbon-13 NMR study of soy protein conformations in solution,” Federation Proceedings, 44:1855, 1807.Google Scholar
  22. Kakalis, L. T., and Baianu, I. C., 1989, “High resolution carbon-13 NMR studies of soy protein isolates”.Google Scholar
  23. Referred to as submitted for publication in Baianu, I.C., 1989, High-Resolution NMR Studies of Food Proteins, in: “NMR in Agriculture,” P. Pfeffer, and W. Gerasimowicz, eds.; CRC Press, Cleveland, Ohio.Google Scholar
  24. Kitamura, K., and Shibasaki, K., 1975, “Isolation and Some Physico-chemical Properties of the Acidic Subunits of Soybean 11S Globulin,” Agric. Biol. Chem., 39:945.CrossRefGoogle Scholar
  25. Komoroski, R. A., Peat, I. R. and Levy, G. C., 1976, 13C NMR Studies of Biopolymers, in: “Topics in Carbon-13 NMR Spectroscopy,” v. 2; G. C. Levy, ed.; John Wiley and Sons, New York.Google Scholar
  26. Koshiyama, I., 1968, “Storage Proteins of Soybean,” Cereal Chem., 45:394.Google Scholar
  27. Koshiyama, I., and Fukushima, D., 1973, “Comparison of Conformations of 7S and 11S Soybean Globulins by Optical Rotatory Dispersion and Circular Dichroism Studies,” Cereal Chem., 50:114–121.Google Scholar
  28. Koshiyama, I., Hamano, M., and Fukushima, D., 1981, “A Heat Denaturation study of the 11S Globulin in Soybean Seeds,” Food Chem., 6:309–322.CrossRefGoogle Scholar
  29. Laemmli, U. K., 1970, “Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4,” Nature (London), 227:680.CrossRefGoogle Scholar
  30. Levitt, M., 1978, “Conformational preferences of amino acids in globular proteins,” Biochemistry, 17:4277–85.PubMedCrossRefGoogle Scholar
  31. Levy, G. C., Lichter, R. L. and Nelson, G. L., 1980, Relaxation Studies, in: “Carbon-13 Nuclear Magnetic Resonance Spectroscopy,” 2nd ed.; John Wiley and Sons: New York/Chichester/Brisbane/Toronto/Singapore.Google Scholar
  32. Lillford, P. G., 1978, Conformation of Plant Proteins, in: “Plant Proteins,” G. Norton, ed.; Butterworths, London.Google Scholar
  33. Mabbutt, B. E., and Wright, P. E., 1983, “Assignment of heme and distal amino acid resonances in the proton NMR spectra of the oxygen and carbon monoxide complexes of soybean leghemoglobin,” Biochem. Biophys. Acta, 744(3):281–90.CrossRefGoogle Scholar
  34. Moreira, M. A., Hermondsen, M. A., Larkins, B. A., and Nielsen, N. C., 1979, “Partial Characterization of the Acidic and Basic Polypeptides of Glycinin,” J. Biol. Chem., 254:9921.PubMedGoogle Scholar
  35. Mori, T., Nakamura, T., and Utsumi, S., 1986, “Behavior of Intermolecular Bond Formation in the Late Stage of Heat-induced Gelation of Glycinin,” J. Agric. Food Chem., 34:33–36.CrossRefGoogle Scholar
  36. Nakamura, T., Utsumi, S., and Mori, T., 1986a, “Mechanism of Heat-induced Gelation and Gel Properties of Soybean 7S Globulin,” Agric. Biol. Chem., 50(5):1287–1293.CrossRefGoogle Scholar
  37. Nakamura, T., Utsumi, S., and Mori, T., 1986b, “Interactions During Heat-induced Gelation in a Mixed System of Soybean 7S and 11S Globulins,” Agric. Biol. Chem., 50(10):2429–2535.CrossRefGoogle Scholar
  38. Nielsen, N. C., 1985a, “Structure of Soy Proteins,” New Protein Foods, 5:27–64.Google Scholar
  39. Nielsen, N. C., 1985b, “The Structure and Complexity of the 11S Polypeptides in Sobeans”. J. Am. Oil Chem. Soc., 62(12):1680–6.CrossRefGoogle Scholar
  40. Patt, S. L., and Shoolery, J. N., 1982, “Attached proton test for carbon-13 NMR,” J. Magn. Reson., 46:435.Google Scholar
  41. Shaka, A. J., Keeler, J., Frenkiel, T., and Freeman, R., 1983, “An improved sequence for broadband decoupling: WALTZ-16,” J. Magn. Reson., 52:335–8.Google Scholar
  42. Slappendel, S., Aasa, R., Falk, K., Malmstrom, B. G., Vaenngaard, T., Veldink, G. A., and Vliegenthart, J. G., 1982, “Proton NMR study on the binding of alcohols to soybean lipoxygenase-1,” Biochem. Biophys. Acta, 708(3):266–71.CrossRefGoogle Scholar
  43. Suresh Chandra, B. R., Appu Rao, A. G., and Narasinga Rao, M. S., 1984, “Effect of Temperature on the Conformation of Soybean Glycinin in 8 M Urea or 6 M Guanidine Hydrochloride Solution,” J. Agric. Food Chem., 32:1402–1405.CrossRefGoogle Scholar
  44. Tatham, A. S., Shewry, P. R., and Belton, P. S., 1985, “13 C-n.m.r. study of 13C hordein,” Biochem J., 232:617–20.PubMedGoogle Scholar
  45. Thanh, V. H., Okubo, K., and Shibasaki, K., 1975, “Isolation and Characterization of the Multiple 7S Globulins of Soybean Proteins,” Plant Physiol., 56:19.PubMedCrossRefGoogle Scholar
  46. Thanh, V. H., and Shibasaki, K., 1976, “Major Proteins of Soybean Seeds. A Straightforward Fractionation and Their Characterization,” J. Agric. Food Chem., 24(6):1117–21.PubMedCrossRefGoogle Scholar
  47. Thanh, V. H., and Shibasaki, K., 1977, “Beta-conglycinin from soybean proteins. Isolation and immunological and physiochemical properties of the monomeric forms,” Biochem. Biophys. Acta, 490:370–384.PubMedGoogle Scholar
  48. Trewhella, J., Appleby, C. A., and Wright, P. E., 1986, “Proton NMR studies of high-spin complexes of soy leghemoglobin. Interactions between the distal histidine and acetate, formate and fluoride ligands,” Aust. J. Chem., 39(2):317–24.CrossRefGoogle Scholar
  49. Utsumi, S., and Kinsella, J. E., 1985, “Forces Involved in Soy Protein Gelation: Effects of Various Reagents on the Formation, Hardness and Solubility of Heat-induced Gels made from 7S, 11S and Soy Isolate,” J. Food Sci., 50:1278–1282.CrossRefGoogle Scholar
  50. Wright, D. J., 1976, The Seed Gobulins, in: “Developments in Food Proteins -5,” B. J. F. Hudson, ed.; Elsevier Applied Science: London/New York, pp., 81–157.Google Scholar
  51. Wüthrich, K., 1976, Carbon-13 NMR of Amino Acids, Peptides and Proteins, in: “NMR in Biological Research: Peptides and Proteins,” North Holland/American Elsevier: Amsterdam/Oxford/New York.Google Scholar
  52. Yamauchi, F., and Yamagishi, Y., 1979, “Carbohydrate Sequence of a Soybean 7S Protein,” Agric. Biol. Chem., 43(3):505–510.CrossRefGoogle Scholar
  53. Yamauchi, F., Ono, H., Kamata, Y., and Shibasaki, K., 1979, “Acetylation of Amino Groups and Its Effect on the Structure of Soybean Glycinin,” Agric. Biol. Chem., 43(6):1309–1315.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • M. S. Fisher
  • W. E. Marshall
    • 1
  • H. F. MarshallJr.
  1. 1.ARS, Southern Regional Research CenterUSDANew OrleansUSA

Personalised recommendations