The Structure and Behavior of the Starch Granule as Studied by NMR

  • J. M. V. Blanshard
  • E. M. Jaroszkiewicz
  • M. J. Gidley
Part of the Basic Life Sciences book series (BLSC, volume 56)


The purpose of this review will be to detail the contribution that NMR spectroscopy has afforded to our knowledge of the structure, gelatinization and retrogradation behavior of the starch granule. Those with only a cursory knowledge of starch should appreciate that other techniques have proved of enormous value in elucidating structure and behavior and the results of early NMR studies in many cases echoed the conclusions derived from other techniques. However, increasingly, NMR spectroscopy is making a distinctive contribution to our understanding of the starch granule and its physical chemistry.


Chemical Shift Starch Granule Glycosidic Linkage Chemical Shift Anisotropy Maize Starch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bhuiyan, M. Z. H., 1980, Physiochemical studies of maize starches in relation to extrusion, Ph.D. thesis, Nottingham University.Google Scholar
  2. Blanshard, J. M. V., 1987, Starch granule structure and function: A physicochemical approach, “Starch: Properties and Potential,” in: “Critical Reports on Applied Chemistry,” (Galliard, T. ed.) 13:16.Google Scholar
  3. French, D., 1984, Organization of starch granules, in: “Starch: Chemistry and Technology,” (Whistler, R. L.; BeMiller, J. N.; Paschall, E. J.; eds.), 2nd edn., Academic Press, Inc.Google Scholar
  4. Furo, I., Pocsik, I., Tompa, K., Teeaar, R., and Lippmaa, E., 1987, 13 CP-DD-MAS C-NMR investigations of anhydrous and hydrated cyclomalto-oligosaccharides: The role of water of hydration, Carbohydr. Res., 166:27.CrossRefGoogle Scholar
  5. Gagnaire, D., Perez, S., and Tran, V., 1982, Configurational statistics of single chains of α-linked glucans, Carbohydr. Polym., 2:171.CrossRefGoogle Scholar
  6. Gidley, M. J., 1988, Conformational studies of α-(l -> 4)-glucans in solid and solution states by NMR spectroscopy, in: “Gums and Stabilizers for the Food Industry,” No. 4, IRL Press, p. 71.Google Scholar
  7. Gidley, M. J., Molecular mechanisms underlying amylose aggregation and gelation, Macromolecules, in press.Google Scholar
  8. Gidley, M. J., and Bociek, S. M., 1986, 13C CP-MAS NMR studies of a-and β-cyclodextrins: resolution of all conformationally-important sites, Chem. Communications, 1223.Google Scholar
  9. Gidley, M. J., and Bociek, S. M., 1988, C CP-MAS studies of amylose inclusion complexes, cyclodextrins, and the amorphous phase of starch granules: relationship between glycosidic linkage 13 conformation and solid-state C chemical shifts, J. Am. Chem. Soc., 110:3820.CrossRefGoogle Scholar
  10. Gidley, M. J., and Bociek, S.M., 13 C CP-MAS NMR studies of frozen solutions of (1 -> 4)-α-D-glycans as a probe of the range of conformations of glycosidic linkages: the conformations of cyclomaltohexaose and amylopectin in aqueous solution, Carbohyr. Res., in press.Google Scholar
  11. Hewitt, J. M., Linder, M., Perez, S., and Buleon, A., 1986, High 13 resolution CP-MAS C-NMR spectra of solid amylodextrins and amylose polymorphs, Carbohydr. Res., 154:1.CrossRefGoogle Scholar
  12. Horii, F., Yamamoto, H., Hirai, A., and Kitamaru, R., 1987, Structural study of amylose polymorphs by cross-polarization magic-angle 13 spinning, C-NMR spectroscopy, Carbohydr. Res., 160:29.CrossRefGoogle Scholar
  13. Jaska, E., 1971, Starch gelatinization as detected by proton magnetic resonance, Cereal Chemistry, 48:435.Google Scholar
  14. Katz, J. R., and van Itallie, T. B., 1930, Alle Starkearten haben das gleiche Retrogradation-spectrum, Z. Physik. Chem., A150:90.Google Scholar
  15. Lechert, H. T., 1981, Water binding on starch: NMR studies on native and gelatinized starch, in: “Water Activity: Influences on Food Quality,” (Rockland, L. B. and Stewart, G. F. Eds.), Academic Press, New York.Google Scholar
  16. Lelievre, J., and Mitchell, J., 1975, A pulsed NMR study of some aspects of starch gelatinization, Die Starke, 27:437.Google Scholar
  17. Miles, M. J., Morris, V. J., and Ring, S. G., 1985, Gelation of amylose, Carbohydr. Res., 135:257.CrossRefGoogle Scholar
  18. Morris, G. A., and Hall, L. D., 1981, Experimental chemical-shift correlation maps from heteronuclear two-dimensional NMR spectroscopy, 1. Carbon-13 and proton chemical shifts of raffinose and its subunits, J. Am. Chem. Soc., 10:4703.CrossRefGoogle Scholar
  19. Morris, G. A., and Hall, L. D., 1982, Experimental chemical shift correlation maps from heteronuclear two-dimensional nuclear magnetic resonance spectroscopy, 2. Carbon-13 and proton chemical shifts of α-D-glucopyranose oligomers, Can. J. Chem., 60:2431.CrossRefGoogle Scholar
  20. Pfeffer, P. E., Hicks, K. B., and Earl, W. L., 1983a, Solid State 13 Structures of keto-disaccharides as probed by C NMR spectroscopy, Carbohydr. Res., 111:181.CrossRefGoogle Scholar
  21. Pfeffer, P. E., Hicks, K. B., Frey, M. H., Opella, S. J., and Earl, W. L., 1983b, 13C-13C Dipolar interactions provide a mechanism for 13 obtaining resonance assignments in solid-state C NMR spectra, J. Magn. Reson., 55:344.Google Scholar
  22. Pfeffer, P. E., Hicks, K. B., Frey, M. H., Opella, S. J., and Earl, W. L., 1984, Complete solid state 13C NMR chemical shift assignment for α-D-glucose, α-D-glucose H20 and β-D-glucose, J. Carbohydrate Chemistry, 3(2):197. 13CrossRefGoogle Scholar
  23. Saito, H., and Tabeta, R., 1981, C chemical shifts of solid (1 -> 4)-13 α-D-glucans by CP-MAS spectroscopy. Conformation dependent C chemical shift as a reference in determining conformation in aqueous solution, Chem. Letts., 713.Google Scholar
  24. Sarko, A., and Wu, H. -C. H., 1978, The crystal structures of A-, B-, and C-polymorphs of amylose and starch, Staerke, 30:73.CrossRefGoogle Scholar
  25. Shashkov, A. S., Lipkind, G. M., and Kochetkov, N. K., 1986, Nuclear Overhauser effects for methyl β-maltoside and the conformational states of maltose in aqueous solutions, Carbohydr. Res., 147:175.CrossRefGoogle Scholar
  26. Veregin, R. P., Fyfe, C. A., Marchessault, R. H., and Taylor, M. G., 1987, Correlation of 13C chemical shifts with torsional angles from 13 high resolution C CP-MAS NMR studies of crystalline cyclomalto-oligosaccharide complexes, and their relation to the structures of the starch polymorphs, Carbohydr. Res., 160:41.CrossRefGoogle Scholar
  27. WillHoft, E. M. A., 1971, Bread Staling 1. -Experimental study, J. Sci. Fd. Agric, 22:176.CrossRefGoogle Scholar
  28. Wynne-Jones, S., and Blanshard, J. M. V., 1986, Hydration studies of wheat starch amylopectin, amylose gels and bread by proton magnetic resonance, Carbohydr. Polymers, 6:289.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • J. M. V. Blanshard
    • 1
  • E. M. Jaroszkiewicz
    • 1
  • M. J. Gidley
    • 2
  1. 1.Food Science Laboratories Department of Applied Biochemistry and Food ScienceNottingham UniversityUK
  2. 2.Unilever Research LaboratorySharnbrook, BedfordUK

Personalised recommendations