Applications of NMR in Agriculture and Biochemistry

  • S. J. Schmidt
  • A. S. Serianni
  • J. W. Finley
Part of the Basic Life Sciences book series (BLSC, volume 56)

An Overview

The complex relationship between molecular structure and biological function is a central theme of most contemporary biochemical studies. The specific interactions of biomacromolecules with themselves, solvents, substrates and other solutes determine their biological functions in living systems. For decades organic chemists have explored structure-reactivity correlations in small organic molecules by studying the effects of thoughtful, systematic changes in molecular structure on chemical behavior. Now, with the tools of modern molecular biology at their disposal, biochemists may systematically alter protein structure to assess the structure-function relationships in this important class of biopolymers. Such studies promise to identify and quantify the molecular factors that confer specificity to protein-substrate binding, and the factors that are responsible for the rate enhancements of enzyme-catalyzed reactions. This information is essential, for example, to the rational design of artificial enzymes and the development of specific enzyme inhibitors for use in the treatment of human metabolic disorders.


Nuclear Magnetic Resonance Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance Study Natural Macromolecule Human Metabolic Disorder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. B. Davies, 1984, Natural Macromolecules, Nucl. Magn. Reson.,13:207–243.CrossRefGoogle Scholar
  2. 2.
    D. B. Davies, 1985, Nuclear Magnetic Resonance, Natural Macromolecules, Nucl. Magn. Reson., 14:211–249.CrossRefGoogle Scholar
  3. 3.
    D. B. Davies, 1986, Natural Macromolecules, Nucl. Magn. Reson.,15:191–215.CrossRefGoogle Scholar
  4. 4.
    D. B. Davies, 1987, Natural Macromolecules, Nucl. Magn. Reson.,16:191–222.CrossRefGoogle Scholar
  5. 5.
    G. E. Chapman, 1978, NMR of Natural Macromolecules, Nucl. Magn. Reson., 7:281–302.CrossRefGoogle Scholar
  6. 6.
    G. E. Chapman, 1979, NMR of Natural Macromolecules, Nucl. Magn. Reson., 8:242–65.CrossRefGoogle Scholar
  7. 7.
    J. DeVlieg, R. M. Scheek, W. F. Van Gunsteren, H. J. C. Berendsen, R. Kaptein, and J. Thomason, 1988, Combined Procedure of Distance Geometry and Restrained Molecular Dynamics Techniques for Protein Structure Determination from Nuclear Magnetic Resonance Data: Application to the DNA Binding Domain of LAC Repressor from Escherichia coli, Proteins: Struct., Funct., Genet., 3(4):209–18.CrossRefGoogle Scholar
  8. 8.
    K. Kanamori, and J. D. Roberts, 1983, Nitrogen-15 NMR Studies of Biological Systems, Acc. Chem. Res., 16(2):35–41.CrossRefGoogle Scholar
  9. 9.
    T. Endo, and T. Miyazawa, 1986, Application of NMR to Conformation Analysis of Biopolymers, Kagaku Sosetsu, 49:143–152.Google Scholar
  10. 10.
    T. A. Cross, J. A. Diverrdi, and S. J. Opella, 1982, Strategy for the Nitrogen NMR Analysis of Biopolymers, J. Am. Chem. Soc., 104(6):1759–61.CrossRefGoogle Scholar
  11. 11.
    K. Wüthrich, 1986, NMR of Proteins and Nucleic Acids.Google Scholar
  12. 12.
    M. Ikura, 1988, Two Dimensional NMR of Proteins, Seibutsu Butsuri, 29(3):135–40.CrossRefGoogle Scholar
  13. 13.
    Y. Kobayashi, 1988, Structure of Solution State of Proteins, NMR and Distance Geometry, Kessho Kaiseki Kenkyu Senta Dayori, 1., 9:5–16.Google Scholar
  14. 14.
    K. Wüthrich, 1987, A NMR View of Proteins in Solution, Springer Ser. iophys., 1 (Struct., Dyn. Funct. Biomol.), 104–7.CrossRefGoogle Scholar
  15. 15.
    S. W. Homans, A. L. DeVries, and S. B. Parker, 1985, Solution Structure f Antifreeze Glycopeptides, Determination of the Major Conformers of the Glycosidic Linkages, FEBS Lettr., 183(1): 133–7.CrossRefGoogle Scholar
  16. 16.
    A. M. Gronenborn, 1987, Determination of Three-Dimensional Structures f Proteins in Solution by Nuclear Magnetic Resonance, Protein Eng., 1(4):275–288.PubMedCrossRefGoogle Scholar
  17. 17.
    A. Eugster, 1988, The Structure of Noncrystalline Proteins. SLZ, chweiz. Lab. Z., 45(1):14–18.Google Scholar
  18. 18.
    D. A. Torchia, and D. L. Vanderhart, 1979, High-Power Double-Resonance tudies of Fibrous Proteins, Proteoglucans and Model Membranes, Top. Carbon-13 NMR Spectrosc, 3:3225–60.Google Scholar
  19. 19.
    A. Graeslund, and R. Rigler, 1986, Biological Macromolecules in olution -Structure and Dynamics, Kosmos (Stockholy), 63:103–14.Google Scholar
  20. 20.
    J. S. Cohen, 1973, Nuclear Magnetic Resonance Investigations of the nteractions of Biomolecules, Exp. Methods Biophys. Chem., 521–88, Ed. by Nicolau, C., Wiley, London.Google Scholar
  21. 21.
    M. A. Landau, 1976, Study of the Complexes of Drug Molecules with iopolymers and Biomembranes by High-Resolution NMR, Khim.-Farm. Zh., 10(11):29–41.Google Scholar
  22. 22.
    G. M. Nikolaev, S. I. Aksenov, and V. S. Pshezhetskii, 1981, Hydration odel Studies of Biopolymers, Stud. Biophys., 85(1):1–2.Google Scholar
  23. 23.
    M. Aizawa, J. Mizuguchi, S. Suzuki, and S. Hayashi, 1972, Properties of ater in Macromolecular Gels, IV, Proton Magnetic Resonance of Water in Macromolecular Gels, Bull. Chem. Soc., Japan, 45(10):3031–4.CrossRefGoogle Scholar
  24. 24.
    S. Takizawa, 1973, Applications of NMR to Biopolymers, Water and ydration, I, in NMR No Seitai Kobunshi Eno Oyo, 64–74, Ed. by A. Wada, Kyoritsu Shuppansha, Tokyo.Google Scholar
  25. 25.
    H. Hayashi, 1973, Applications of NMR to Biopolymers, Water and ydration, II, in NMR No Seitai Kobunshi Eno Oyo, 64–74, Ed. by A. Wada, Kyoritsu Shuppansha, Tokyo.Google Scholar
  26. 26.
    M. I. Burgar, 1982, Hydration Role of Water in Biological Systems as etermined by Oxygen-17 NMR, Stud. Biophys., 91(l):29–36.Google Scholar
  27. 27.
    S. J. Richardson, 1986, Molecular Mobility Characterization of Polymer nd Solute Water States as Determined by Nuclear Magnetic Resonance, Rheology and Hydrodynamic Equilibrium, Diss. Abstr. Int. B., 1987, 47(7):2701.Google Scholar
  28. 28.
    V. Sklenar, 1987, Water Supression Using a Combination of Hard and Soft Pulses, J. Mag. Res., 75(2):352–7.Google Scholar
  29. 29.
    G. G. S. Dutton, 1981, Use of NMR Spectroscopy in the Study of the Molecular Structure of Biopolymers. Polym. Prep., Am. Chem. Soc., Div. Polym. Chem., 22(1):326.Google Scholar
  30. 30.
    M. K. Mclntyre, and G. W. Small, 1987, Carbon-13 Nuclear Magnetic Resonance Spectrum Simulation Methodology for the Structure Elucidation of Carbohydrates, Anal. Chem., 59(14):1805–11.CrossRefGoogle Scholar
  31. 31.
    B. Overdijk, E. P. Beem, Ge J. VanSteijn, L. A. W. Trippelvitz, J. J. W. Lisman, J. Paz Parente, P. Cardon, I. Leroy, and B. Fourtner, 1985, Biochem. J., 232(3):637–41.PubMedGoogle Scholar
  32. 32.
    P. Pfeffer, F. W. Parish, and J. Unruh, 1980, Deuterium Induced, Differential Isotope-Shift Carbon-13 NMR, Part 2, Effects of Carbohydrate-Structure Changes on Induced Shifts in Differential Isotope-Shift Carbon-13 NMR, Carbohydr. Res., 84(1):13–23.CrossRefGoogle Scholar
  33. 33.
    P. Voss, 1979, Carbon-13 NMR Spectroscopy as a Method for the Elucidation of Structural Problems in Carbohydrate Chemistry, Starch/Staerke, 31(12):404–9.CrossRefGoogle Scholar
  34. 34.
    M. Hatano, 1982, High Resolution NMR Approach to the Study of Solid Macromolecules, Kagaku (Kyoto), 37(9):703–6.Google Scholar
  35. 35.
    B. C. Gerstein, 1983, High-Resolution NMR Spectroscopy of Solids, Part II, Anal. Chem., 55(8):899A–900A.Google Scholar
  36. 36.
    S. J. Opella, J. G. Hexem, M. H. Frey, and T. A. Cross, Philos. Trans. R. Soc. London, Ser. A, 299(1452):665–83.Google Scholar
  37. 37.
    O. Jardetzky, 1981, NMR Studies of Macromolecular Dynamics, Acc. Chem. Res., 14(10):291–8.CrossRefGoogle Scholar
  38. 38.
    B. Sheard, 1987, NMR and Molecular Modeling: A New Tool for Biotechnology, World. Biotech Rep., Vol. 1(2):117–22. Online Pugl., London.Google Scholar
  39. 39.
    I. Horman, 1984, NMR Spectroscopy in Analysis of Foods and Beverages, 205–263, Academic Press, New York.Google Scholar
  40. 40.
    A. Abragam, 1961, The Principles of Nuclear Magnetism, Clarendon Press, Oxford.Google Scholar
  41. 41.
    R. K. Harris, and B. E. Mann, (Eds.), 1978, NMR and the Periodic Table, Academic Press, New York.Google Scholar
  42. 42.
    L. J. Berliner, and J. Reuben, (Eds.), 1980, Biological Magnetic Resonance, Plenum Press, New York.Google Scholar
  43. 43.
    P. Laszlo, (Ed.), 1983, NMR of Newly Accessible Nuclei, Vols. 1 and 2, Academic Press, Inc., New York.Google Scholar
  44. 44.
    I. D. Campbell, R. A. Dwek, 1984, Biological Spectroscopy, Benjamin Cummings Publishing Company, Inc., Menlo Park, CA.Google Scholar
  45. 45.
    I. Horman, 1984, NMR Spectroscopy, in: “Analysis of Foods and Beverages; Modern Techniques,” E. Charalambous, (Ed.), Academic Press, Inc., New York.Google Scholar
  46. 46.
    L. W. Jelinski, 1984, Modern NMR Spectroscopy, C & E News, November 5:26.CrossRefGoogle Scholar
  47. 47.
    W. P. Rothwel, 1985, Nuclear Magnetic Resonance Imaging, Applied Optics, 24(23):3958.CrossRefGoogle Scholar
  48. 48.
    F. D. Blum, 1986, Pulsed-gradient spin-echo nuclear magnetic resonance spectroscopy, Spectroscopy, 1(15):32.Google Scholar
  49. 49.
    W. Kemp, 1986, NMR in Chemistry; A Multinuclear Introduction, MacMillan Education Ltd., London.Google Scholar
  50. 50.
    G. A. Morris, 1986, Modern NMR Techniques For Structure Elucidation, Magnetic Resonance in Chemistry, 24:371.CrossRefGoogle Scholar
  51. 51.
    P. G. Morris, 1986, Nuclear Magnetic Resonance Imaging in Medicine and Biology, Clarendon Press, Oxford.Google Scholar
  52. 52.
    Atta-Ur Rahman, 1986, Nuclear Magnetic Resonance, Springer-Verlag, New York.CrossRefGoogle Scholar
  53. 53.
    A. E. Dermone, 1987, Modern NMR Techniques for Chemistry Research, Pergamon Press, New York.Google Scholar
  54. 54.
    R. R. Ernst, G. Bodenhausen, and A. Wokaun, 1987, Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Clarendon Press, Oxford.Google Scholar
  55. 55.
    R. F. Bovey, L. Jelinski, and P. A. Mirau, 1988, Nuclear Magnetic Resonance Spectroscopy, 2nd Edition, Academic Press, Inc., New York.Google Scholar
  56. 56.
    J. Karger, H. Pfeifer, and W. Heink, 1988, Principles and application of self diffusion measurements by nuclear magnetic resonance, Advances in Magnetic Resonance, Vol. 12, Academic Press, Inc., New York.Google Scholar
  57. 57.
    F. E. Pfeifer, and W. V. Gerasimowicz, 1989, Nuclear Magnetic Resonance in Agriculture, CRC Press, Boca Raton, Florida.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • S. J. Schmidt
    • 1
  • A. S. Serianni
    • 2
  • J. W. Finley
    • 3
  1. 1.Division of Foods and NutritionUniversity of IllinoisUrbanaUSA
  2. 2.Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameUSA
  3. 3.Nabisco Biscuit CompanyEast HanoverUSA

Personalised recommendations