Immunochemical Analyses of the Myoblast Membrane and Lineage

  • Stephen J. Kaufman
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 280)


We have been using monoclonal antibodies to analyse cells by immunofluorescence microscopy in an effort to understand the molecules and events on the myoblast membrane that are germane to their differentiation. What follows is a summary of some of our findings.


Myogenic Cell Skeletal Myoblast Myogenic Lineage Multiple Regulatory Event Intermediate Filament Protein Desmin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lee, H. U. and Kaufman, S. J. (1981). Use of monoclonal antibodies in the analysis of myoblast development. Devel. Biol. 81: 81–95.CrossRefGoogle Scholar
  2. 2.
    Kaufman, S. J. and Foster, R. F. (1984). Antigenic changes on the myoblast membrane accompany development. Exp. Biol. Med. 9: 57–62.Google Scholar
  3. 3.
    Lee, H. U., Kaufman, S. J., Coleman, J. R. (1984). Expression of myoblast and myocyte antigens in relation to differentiation and the cell cycle in the rat L8 muscle cell line. Exp. Cell Res. 152: 331–347.PubMedCrossRefGoogle Scholar
  4. 4.
    Kaufman, S. J. and Foster, R. F. (1985). Remodeling of the myoblast membrane accompanies development. Devel. Biol. 109: 1–14.CrossRefGoogle Scholar
  5. 5.
    Foster, R.F,and Kaufman, S. J. (1985). Cell-surface events during myogenesis: Immunofluorescence analysis using monoclonal antibodies, In: Methodological Surveys in Biochemistry and Analysis, vol. 14, Antibody Combining Sites: Their Investigation and Exploitation in Subcellular Studies, eds. Reid, E. and Moore, D. J., Plenum, 167–176.Google Scholar
  6. 6.
    Lowrey, A. A. and Kaufman, S. J. (1989). Membrane- cytoskeleton associations during myogenesis deviate from traditional definitions. Exp. Cell Res. 183: 1–23.CrossRefGoogle Scholar
  7. 7.
    Kaufman, S. J., Foster, R. F., Haye, K. R., and Faiman, L. E. (1985). Expression of a developmentally regulated antigen on the surface of skeletal and cardiac muscle cells. J. Cell Biol. 100: 1977–1987.PubMedCrossRefGoogle Scholar
  8. 8.
    Kaufman, S. J. and Foster, R. F. (1988). Replicating myoblasts express a muscle-specific phenotype. Proc. Natl. Acad. Sci. USA 85:9606–9610:PubMedCrossRefGoogle Scholar
  9. 9.
    Kaufman, S. J. and Foster, R. F. (1989). Preterminal differentiation in the myogenic lineage. In: Cellular and Molecular Biology of Muscle Development, eds. Stockdale, F. and Kedes, L., A. R. Liss, Inc., 47–55.Google Scholar
  10. 10.
    Davis, R. L., Weintraub, H. and Lassar, A. B. (1987). Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51: 987–1000.PubMedCrossRefGoogle Scholar
  11. 11.
    Tapscott, S. J., Davis, R. L., Thayer, M. J., Cheng, P.-F. Weintraub, H. and Lassar, A. B. (1988). MyoDl: a nuclear phosphoprotein requiring a myc homology region to convert fibroblasts to myoblasts. Science 242: 405–411.PubMedCrossRefGoogle Scholar
  12. 12.
    Wright, W. E., Sassoon, D. A. and Lin, V. K. (1989). Myogenin. a factor regulating myogenesis has a domain homologous to MyoDCell 56: 607–617.Google Scholar
  13. 13.
    Pinney D. F., Pearson-White, S.H., Konieczny, S. F., Latham, K. E. and Emerson, C. P., Jr. (1988). Myogenic lineage determination and differentiation: evidence for a regulatory gene pathway. Cell 53: 781–793CrossRefGoogle Scholar
  14. 14.
    Edmondson, D. G. and Olson, E. N. (1989). A gene with homology to the myc similarity region of MyoDl is expressed during myogenesis and is sufficient to activate the muscle differentiation program, Genes and Devel 3: 628–640.CrossRefGoogle Scholar
  15. 15.
    Braun, T., Buschhausen-Denker, G., Bober, E., Tannich, E. and Arnold, H. H. (1989). A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion of 10T1/2 fibroblasts. EMBO J 8: 701–709.PubMedGoogle Scholar
  16. 16.
    Webster, K. A., Muscat, G. E. O. and Kedes, L. (1988). Adenovirus E1A products suppress myogenic differentiation and inhibit transcription from muscle-specific promoters. Nature 332: 553–557.PubMedCrossRefGoogle Scholar
  17. 17.
    Gosset, L. A., Zhang, W. and Olson, E. N. (1988). Dexamethasone-dependent inhibition of differentiation of C2 myoblasts bearing steroid inducible N-ras oncogenes. J. Cell Biol. 106: 2127–2138.CrossRefGoogle Scholar
  18. 18.
    Pearson, M. L. and Crerar, M. M. (1982). RNA polymeraseII mutants defective in myogenesis, In: Muscle Development: Molecular and Cellular Control, eds. Pearson, M. L. and Epstein, H. F., Cold Spring Harbor Press, 259–267.Google Scholar
  19. 19.
    Schweitzer, J., Dichter, M. A., and Kaufman, S. J. (1987). Fibroblasts modulate expression of Thy-1 on the surface of skeletal myoblasts. Exp. Cell Res. 172: 1–20.PubMedCrossRefGoogle Scholar
  20. 20.
    Foster, R. F., Thompson, J. M. and Kaufman, S. J. (1987). A laminin substrate promotes myogenesis in rat skeletal muscle cultures. Devel. Biol. 122: 11–20.CrossRefGoogle Scholar
  21. 21.
    Haye, K. R., Foster, R. F., Goff, J. P., and Kaufman, S. J. (1986). Endocytosis of a2-macroglobulin is developmentally regulated during myogenesis. Devel. Biol. 114: 470–474.CrossRefGoogle Scholar
  22. 22.
    Kaufman, S. J. and Robert-Nicoud, M. (1985). DNA replication in rat myoblasts studied with monoclonal antibodies against 5-bromodeoxyuridine, actin, and a2-macroglobulin. Cytometry, 6: 570–577.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Stephen J. Kaufman
    • 1
    • 2
  1. 1.Department of MicrobiologyUniversity of IllinoisUrbanaUSA
  2. 2.Department of Cell BiologyUniversity of IllinoisUrbanaUSA

Personalised recommendations