MDX Mouse as Therapeutic Model System: Development and Implementation of Phenotypic Monitoring

  • Michael S. Hudecki
  • Catherine M. Pollina
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 280)


As Michael Brooke so aptly stated at the beginning of this session on phenotypic monitoring, it is imperative to have a quantifiable test system in place prior to assessing treatment entities for any of the muscular dystrophies (Brooke et al., 1981). In this manner, the various medical, experimental, and ethical considerations have been resolved in advance providing an unequivocal foundation for determining efficacy (regardless of the particular therapeutic approach under consideration). Similarly, in the preclinical study of myopathic animal models, it is equally pertinent to establish reliable phenotypic endpoints before the implementation of a therapeutic study. Hence, efficacy or a lack thereof can be objectively and rationally determined against a backdrop of standardized markers of the disease.


Muscular Dystrophy Duchenne Dystrophy Spinal Muscular Atrophy Duchenne Muscular Dystrophy Activity Chamber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brooke, M. H., Griggs, R. C., Mendell, J. R., Fenichel, G. M., Shumate, J. B. and Pellegrino, R. J., 1981, Clinical trial in Duchenne dystrophy. I. The design of the protocol, Muscle and Nerve, 4: 186–197.PubMedCrossRefGoogle Scholar
  2. Bulfield, G., Silier, W. G., Wright, P. A. L. and Moore, K. J., 1984, X-chromosome-linked muscular dystrophy (mdx) in the mouse, Proceedings of the National Academy of Sciences USA, 81: 1189–1192.CrossRefGoogle Scholar
  3. Christie, K. N., 1988, Chymostatin has no apparent beneficial effect on muscular dystrophy in the mdx mouse, J. Neurol. Sci., 84: 341.PubMedCrossRefGoogle Scholar
  4. Cooper, B. J., Winand, M. J., Stedman, H., Valentine, B. A., Hoffman, E. P., Kunkel, L, M., Scott, M. O., Fishbeck, K. H., Kornegay, J. N., Avery, R. J., Williams, J. R., Schmechel, R. D. and Sylvester, J. E., 1988, The homologue of the duchenne locus is defective in X-linked muscular dystrophy of dogs, Nature, 334: 154–156.Google Scholar
  5. Cosmos, E., Butler, J., Mazliah, J. and Allard, E. P., 1980, Animal models of muscle disease. Part 1. Avian dystrophy, Muscle and Nerve, 3: 427–435.PubMedCrossRefGoogle Scholar
  6. Cullen, M. J. and Jaros, E., 1988, Ultrastructure of the skeletal muscle in the X-chromosome linked dystrophic (mdx) mouse. Comparison with Duchenne muscular dystrophy, Acta Neuropathol., 77: 69–81.PubMedCrossRefGoogle Scholar
  7. Galindo J. G., Hudecki, M. S., Davis, F. B., Davis, P. J., Thacore, H. R., Pollina, C. M., Blas, S. D. and Schoenl M., 1988, Abnormal response to calmodulin in vitro of dystrophic chicken muscle membrane Ca2’-ATPase activity, Biochemistry, 27: 7519–7524.PubMedCrossRefGoogle Scholar
  8. Hoffman, E. P., Brown, R. H. and Kunkel, L. M., 1987a, Dystrophin: The protein product of the Duchenne muscular dystrophy locus, Cell, 51: 919–928.PubMedCrossRefGoogle Scholar
  9. Hoffman, E. P., Hudecki, M. S., Rosenberg, P. A., Pollina, C. M. and Kunkel, L. M., 1988, Cell and fiber-type distribution of dystrophin, Neuron, 1: 411–420.PubMedCrossRefGoogle Scholar
  10. Hoffman, E. P., Monaco, A. P., Feener, C. C. and Kunkel, L. M., 1987b, Conservation of the Duchenne muscular dystrophy gene in mice and humans, Science, 238: 347–350.PubMedCrossRefGoogle Scholar
  11. Hudecki, M. S. and Barnard, E. A., 1976, Retardation of symptoms of dystrophy in genetically dystrophic chickens by chemotherapy, Res. Commun. Chem. Pathol. Pharmacol., 14: 167–176.PubMedGoogle Scholar
  12. Hudecki, M. S., Caffiero, A. T., Gregorio, C. C. and Pollina, C. M., 1985, Effects of percutaneous electrical stimulation on functional ability, plasma creatine kinase and pectoralis musculature of normal and genetically dystrophic chickens, Exp. Neurol., 90: 53–72.PubMedCrossRefGoogle Scholar
  13. Hudecki, M. S., Kibler, P. K., Davis, P. J., Davis, F. B., Thacore, H. R., Pollina, C. M. and Blas, S. D., 1986, Abnormal gene expression of calmodulin in dystrophic chicken muscle, Res. Commun. Biochem. Biophys., 137: 507–512.Google Scholar
  14. Hudecki, M. S., Pollina, C. M., Bhargava, A. K., Fitzpatrick, J. E., Privitera, C. A. and Schmidt, D., 1978, Effects of exercise on chickens with hereditary muscular dystrophy, Exp. Neurol., 61: 65–73.PubMedCrossRefGoogle Scholar
  15. Hudecki, M. S., Pollina, C. M., Bhargava, A. K., Hudecki, R. S., 1980, Screening of anti-seritoninergic drugs employing the genetically dystrophic chicken, Arch. Neurol., 73: 173–185.Google Scholar
  16. Hudecki, M. S., Pollina C. M., Heffner, R. R. and Bhargava, A. K., 1981, Enhanced functional ability in drug-treated dystrophic chickens: Trial results with indomethacin, diphenylhydantoin and prednisolone, Exp. Neurol., 73: 173-185.Google Scholar
  17. Karpati, G., Pouliot, Y., Carpenter, S. and Holland, P., 1989, Implantation of nondystrophic allogenic myoblasts into dystrophic muscles of mdx mice produces “mosaic” fibers of normal microscopic phenotype, in: “Cellular and Molecular Biology of Muscle Development”, Alan R. Liss, Inc., New York.Google Scholar
  18. Law, P. K., Goodwin, T. G. and Wang, M. G., 1988, Normal myoblast injections provide genetic treatment from murine dystrophy, Muscle and Nerve, 11: 525–533.PubMedCrossRefGoogle Scholar
  19. Law, P. K. and Schafer, B., 1989, Personal communication.Google Scholar
  20. Morgan, J. E. and Partridge, T. A., 1989, Personal communication.Google Scholar
  21. Orfanos, A. P. and Naylor, E. W., 1984, A rapid screening test for Duchenne muscular dystrophy using dried blood samples, Clin. Chim. Acta, 138: 267–274.PubMedCrossRefGoogle Scholar
  22. Partridge, T. A., Morgan, Coulton, G. R., Hoffman, E. P. and Kunkel, L. M., 1989, Conversion of mdx myofibers from dystrophin-negative to -positive by injection of normal myoblasts, Nature, 337: 176–179.Google Scholar
  23. Sano, M., Wada, Y., Ii, K., Kominami, E., Katunuma, N. and Tsukagoshi, H., 1988, Immunolocalization of cathepsins B, H and L in skeletal muscle of X-linked muscular dystrophy (mdx) mouse, Acta Neuropathol., 75: 217–225.PubMedCrossRefGoogle Scholar
  24. Sawada, H., Tsuji, S., Kusumoto, S., Dai, Y. and Matsushita, H., 1986, Preclinical increase in activity of muscle microsomal trypsin-like protease in murine muscular dystrophy, C57B1/10, mdx, FEBS Lett., 199: 193–197.PubMedCrossRefGoogle Scholar
  25. Turner, P. R., Westwood, T., Regan, C. M. and Steinhardt, R. A., 1988, Increased protein degradation results from elevated free calcium levels found in muscle from mdx mice, Nature, 335: 735–738.PubMedCrossRefGoogle Scholar
  26. Zapalowski, C. hudeck, M. S., Davis, F. B., Davis, P. J., Pollina, C. M. and Blass, S. D., 1989, Characterization of a biochemical abnormality in the murine model (mdx) of muscular dystrophy, Clin. Res., 37: 464a.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Michael S. Hudecki
    • 1
  • Catherine M. Pollina
    • 1
  1. 1.Department of Biological SciencesState University of New York at BuffaloUSA

Personalised recommendations