Mouse Chimeras and Genetic Rescue of Mosaic Muscle

  • Alan Peterson
  • David Cross
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 280)


The precise developmental mechanisms leading to myoblast fusion and the subsequent functional relationships that exist amongst the myonuclei contained within each syncytium are for the most part ill-defined. In contrast, extraordinary advances have been achieved in defining the precise molecular deficits causing several inherited diseases of muscle. In such diseases, functional rescue of muscle might be achievable by the introduction of genetically normal myonuclei but this strategy ultimately depends upon the interrelationships that exist between the myonuclei and the syncytial cytoplasm. If the mRNA encoded by each myonucleus was translated into protein molecules that were subsequently restricted to a “nuclear territory”, rescue of such mosaic fibers might depend upon not only the number of transplanted myonuclei but also their intrafiber distribution. Alternatively, if proteins encoded by each myonucleus were distributed uniformly throughout the syncytium, the spatial organization of the transplanted myonuclei could be irrelevant.


Schwann Cell Muscular Dystrophy Myoblast Fusion Dystrophin Deficiency Dystrophia Muscularis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Mintz, and W. Baker, Normal Mammalian Muscle Differentiation and Gene Control of Isocitrate Dehydrogenase Synthesis. Pnas 58: 592–598 (1967).PubMedCrossRefGoogle Scholar
  2. 2.
    A. Peterson, P. Frair, H. Rayburn, and D. Cross, Development and Disease in the Neuromuscular System of Muscular Dystophic ↔; Normal Mouse Chimaeras. In Society for Neuroscience Symposia. Vol.4: Aspects of Developmental Neurobiology, pp. 258–273 (1979), Society for Neuroscience, Bethesda, MD.Google Scholar
  3. 3.
    A. Peterson, Chimeras Mouse Study Shows Absence of Disease in Genetically Dystrophic Muscle. Nature 248: 561–564 (1974).PubMedCrossRefGoogle Scholar
  4. 4.
    P. Frair, P. Strasberg, K. Freeman, and A. Peterson, Mitochondrial Malic Enzyme in Mosaic Skeletal Muscle of Mouse Chimeras. Biochem.Genet. 17: 693–702 (1979).PubMedCrossRefGoogle Scholar
  5. 5.
    A. Peterson, P. Frair, and G. Wong, A Technique for Detection and Relative Quantitative Analysis of Glucosephosphate Isomerase Isozymes from Nanogram Tissue Samples. Biochem. Genet. 16: 681–690 (1978).PubMedCrossRefGoogle Scholar
  6. 6.
    P. Frair, and A. Peterson, The Nuclear-Cytoplasmic Relationship in ‘Mosaic’ Skeletal Muscle Fibers from Mouse Chimaeras. Exp. Cell Res. 145: 167–178 (1983).PubMedCrossRefGoogle Scholar
  7. 7.
    D. Harris, D. Falls, and G. Fischbach, Differential Activation of Myotube Nuclei Following Exposure to an Acetylcholine Receptor-Inducing Factor. Nature 337: 173–176 (1989).PubMedCrossRefGoogle Scholar
  8. 8.
    A. Michelson, E. Russell, and P. Harman, Dystrophia muscularis: A Hereditary Primary Myopathy in the House Mouse. Proc. Nathl. Acad. Sci. U.S.A. 41: 1079–1084 (1955).CrossRefGoogle Scholar
  9. 9.
    W. Bradley, and M. Jenkison, Abnormalities of Peripheral Nerves in Murine Muscular Dystrophy. J. Neurol. Sci. 18: 227–247 (1973).PubMedCrossRefGoogle Scholar
  10. 10.
    R. Madrid, E. Jaros, M. Cullen, and W. Bradley, Genetically Determined Defect of Schwann Cell Basement Membrane in Dystrophic Mouse. Nature 257: 319–321 (1975).PubMedCrossRefGoogle Scholar
  11. 11.
    A. Peterson, Peripheral Nerves in Shiverer ↔; Dystrophic Mouse Chimeras: Evidence that a Non-Schwann Cell Component is Required for Axon Ensheathment in vivo. J. Neurosci. 5: 1740–1754 (1985).PubMedGoogle Scholar
  12. 12.
    C. Cornbrooks, F. Mithen, J. Cochran, and R. Bunge, Factors Affecting Schwann Cell Basal Lamina Formation in Cultures of Dorsal Root Ganglia from Mice with Muscular Dystrophy. Dev. Brain Res. 6: 57–67 (1983).CrossRefGoogle Scholar
  13. 13.
    C. Stirling, Experimentally Induced Myelination of Amyelinated Axons in Dystrophic Mice. Brain Res. 87: 130135 (1975).Google Scholar
  14. 14.
    G. Bray, S. David, T. Carlstedt, and A. Aguayo, Effects of Crush Injury on the Abnormalities in the Spinal Roots and Peripheral Nerves of Dystrophic Mice. Muscle Nerve 6: 497–503 (1983).PubMedCrossRefGoogle Scholar
  15. 15.
    A. Peterson, and G. Bray, Normal Basal Laminas are Realized on Dystrophic ↔;Schwann Cells in Dystrophic H Shiverer Chimera Nerves. J. Cell Biol. 99: 1831–1837 (1984).PubMedCrossRefGoogle Scholar
  16. 16.
    S. Gluecksohn-Waelsch, Lethal Genes and Analysis of Differentiation. Science 142: 1269–1274 (1963).PubMedCrossRefGoogle Scholar
  17. 17.
    T. Tanabe, K. Beam, J. Powell, and S. Numa, Restoration of Excitation-Contraction Coupling and Slow Calcium Current in Dysgenic Muscle by Dihydropyridine Receptor Complementary DNA. Nature 336: 134–139 (1988).PubMedCrossRefGoogle Scholar
  18. 18.
    C. Knudson, N. Chaudhari, A. Sharp, J. Powell, K. Beam, and K. Campbell, Specific Absence of the al Subunit of the Dihydropyridine Receptor in Mice with Muscular Dysgenesis. J. Biol. Chem. 264: 1345–1348 (1989).PubMedGoogle Scholar
  19. 19.
    J. Powell, and D. Fambrough, Electrical Properties of Normal and Dysgenic Mouse Skeletal Muscle in Culture. Cell Physiol. 82: 21–38 (1973).CrossRefGoogle Scholar
  20. 20.
    A. Peterson, and S. Pena, Relationship of Genotype and in vitro Contreactivity in mdg/mdg ↔;±/± “Mosaic” Myotubes. Muscle and Nerve 7: 194–203 (1984).PubMedCrossRefGoogle Scholar
  21. 21.
    F. Rieger, D. Cross, A. Peterson, M. Pinçon-Raymond, and I. Tretjakoff, Disease Expression in +/+ ↔; Jnda/mdg Mouse Chimeras: Evidence for an Extramuscular Component in the Pathogenesis of Both Dysgenic Abnormal Diaphragm Innervation and Skeletal Muscle 16 S Acetylcholinesterase Deficiency. Dev. Biol. 106: 296–306 (1984).PubMedCrossRefGoogle Scholar
  22. 22.
    G. Pavlath, K. Rich, S. Webster, and H. Blau, Localization of Muscle Gene Products in Nuclear Domains. Nature 337: 570–573 (1989).PubMedCrossRefGoogle Scholar
  23. 23.
    E. Hoffman, R. Brown, and L. Kunkel, Dystrophin: Thhe Protein Product of the Duchenne Muscular Dystrophy Locus. Cell 51: 919 (1987).PubMedCrossRefGoogle Scholar
  24. 24.
    G. Bulfield, W. Siller, P. Wight, and K. Moore, XChromosome-Linked Muscular Dystrophy (MDX) in the Mouse. Proc Natl Acad Sci 81–1189 (1984).Google Scholar
  25. 25.
    G. Karpati, Y. Pouliot, S. Carpenter, and P. Holland, Implantation of Nondystrophic Allogenic Myoblasts into Dystrophic Muscles of MDX Mice Produces “Mosaic” Fibers of Normal Microscopic Phenotype. In Cellular and Molecular Biology of Muscle Development Alan R. Liss, Inc. 973–985 (1989).Google Scholar
  26. 26.
    D. Watt, J. Morgan, and T. Partridge, Use of Mononuclear Precursor Cells to Insert Allogeneic Genes into Growing Mouse Muscles. Muscle & Nerve 7: 741 (1984).CrossRefGoogle Scholar
  27. 27.
    D. Watt, K. Lambert, T. Partridge, and J. Sloper, Incorporation of Donor Muscle Precursor Cells into an Area of Muscle Regeneration in the Host Mouse. J. Neurol Sci 57: 319 (1982).PubMedCrossRefGoogle Scholar
  28. 28.
    G. Karpati, Y. Pouliot, E. Zubrzycka-Gaan, S. Carpenter, P. Ray, R. Worton, and P. Holland, Dystrophin is Expressed in mdx Skeletal Muscle Fibers After Normal Myoblast Implantation. Am J. Pathol. 135: 27–32 (1989).PubMedGoogle Scholar
  29. 29.
    T. Partridge, J. Morgan, G. Coulton, E. Hoffman, and L. Kunkel, Conversion of mdx Myofibres from DystrophinNegative-to-Positive by Injection of Normal Myoblasts. Nature 337: 176–179 (1989).PubMedCrossRefGoogle Scholar
  30. 30.
    Y. Tanabe, K. Esaki, and T. Nomura, Skeletal Muscle Pathology in X-Chromosome-Linked Muscular Dystrophy (MDX) Mouse. Arta Neuropathol (Berl) 69: 91 (1986).CrossRefGoogle Scholar
  31. 31.
    F. Torres, and L. Duchen, The mutant MDX: Inherited Myopathy in the Mouse. Brain 110: 269 (1987).PubMedCrossRefGoogle Scholar
  32. 32.
    V. Chapman, D. Miller, D. Armstrong, and T. Caskey, Recovery of Induced Mutations for X Chromosome-Linked Muscular Dystrophy in Mice. Proc. Natl. Acad. Sci. 86: 1292–1296 (1989).PubMedCrossRefGoogle Scholar
  33. 33.
    S. Garther, and R. Andina, Mammalian X-Chromosome Inactivation. Adv. Hum. Genet. 7: 99–140 (1976).Google Scholar
  34. 34.
    M. Nesbitt, Chimeras vs X-Inactivation Mosaicism in the Mouse. Dev. Biol. 26: 252–263 (1974).CrossRefGoogle Scholar
  35. 35.
    J. Dangain, and G. Vrobova, Muscle Development in MDX Mutant Mice. Muscle & Nerve 7: 700 (1984).CrossRefGoogle Scholar
  36. 36.
    G. Karpati, S. Carpenter, and S. Prescott, Small-Caliber Skeletal Muscle Fibers do not Suffer Necrosis in MDX Mouse Dystrophy. Muscle & Nerve 11: 795–803 (1988).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Alan Peterson
    • 1
  • David Cross
    • 2
  1. 1.Ludwig InstituteMontrealCanada
  2. 2.Department of PediatricsThe National Jewish CenterDenverUSA

Personalised recommendations