High-Field Superconducting Magnets for Particle Accelerators

  • R. Perin
Part of the Ettore Majorana International Science Series book series (EMISS, volume 53)


Particle Physics requires higher and higher energy accelerators-colliders to explore the fundamental components of matter. For electron-positron accelerators, circular machines, which make use of low bending magnetic field to limit synchrotron radiation, have probably reached their maximum size with LEP and the trend for the future is towards linear facilities. For high energy hadron accelerators/colliders, superconducting magnets have been adopted in order to save electrical energy and reduce machine size, and the quest for cost efficiency pushes towards higher field. The 9 to 10 tesla range has already been attained in short dipole magnets.

The large proton accelerators/colliders presently under construction, approved or planned represent the largest scale application of superconductivity and require massive production in industry of advanced technology conductors, magnets and cryogenic equipment.

A review is given of the magnets for these projects and of the future trends supported by R. &D. programs.


Large Hadron Collider High Field Magnet Particle Accelerator Model Magnet Persistent Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B.H. Wiik, IEEE Trans.Nucl.Sc, vol.NS-32, pages 1587–1591, October 1985.Google Scholar
  2. 2.
    A.I. Ageev et al., Proc.1988 EPAC Conf., pages 233–235.Google Scholar
  3. 3.
    Conceptual Design of the Superconducting Super Collider, SSC SR-2020, March 1986.Google Scholar
  4. 4.
    The LHC Working Group, CERN 87–05, May 1987.Google Scholar
  5. 5.
    P.J. Lee and D.C. Larbalestier, Journal of Materials Sc. 23, 1988.Google Scholar
  6. 6.
    R. Scanlan, SSC-MAG-226, LBL-26244, February 1989.Google Scholar
  7. 7.
    R.K. Maix, D. Salathe, S.L. Wipf, M. Garber, IEEE Trans. on Magnetics, Vol. 25, pages 1656–1659, March 1989.ADSCrossRefGoogle Scholar
  8. 8.
    J. Grisel, J.M. Royet, R.M. Scanlan, R. Armer, IEEE Trans. on Magnetics,Vol. 25, pages 1608–1610, March 1989.ADSCrossRefGoogle Scholar
  9. 9.
    K. Ishibashi et al., IEEE Trans. on Magnetics, Vol. 25, pages 1628–1631, March 1989.ADSCrossRefGoogle Scholar
  10. 10.
    M. Bona, G. Sborchia, G. Spigo, CERN/TIS/MC/03–88, SPS/EMA/88–01,January 1988.Google Scholar
  11. 11.
    C.L. Goodzeit, M.D. Anerella, G.L. Ganetis, IEEE Trans. on Magnetics,Vol. 25, pages 1463–1468, March 1989.ADSCrossRefGoogle Scholar
  12. 12.
    D. Leroy, R. Perin, D. Perini, A. Yamamoto. Structural analysis of the LHC 10 T twin-aperture dipole. Paper presented at 11th Int. Conf. on Magnet Techn., Tsukuba (Japan ), August 1989.Google Scholar
  13. 13.
    H. Kaiser, 13th Int. Conf. on High Energy Accelerators, Novosibirsk,August 1986, DESY HERA 1986–14.Google Scholar
  14. 14.
    J. Peoples for BNL, Fermilab., LBL teams and SSC CDG, IEEE Trans. on Magnetics, Vol. 25, pages 1444–1450, March 1989.ADSCrossRefGoogle Scholar
  15. 15.
    R. Perin, CERN LHC Note 32, August 1985.Google Scholar
  16. 16.
    R. Perin, D. Leroy, G. Spigo, IEEE Trans. on Magnetics, Vol. 25, pages 1632–1635, March 1989.ADSCrossRefGoogle Scholar
  17. 17.
    T. Shintomi et al., IEEE Trans. on Nucl.Sc., Vol.NS 32, pages 3719–3721, October 1985.ADSCrossRefGoogle Scholar
  18. 18.
    J.C. Colvin et al., Nucl.Instr. and Methods in Phys., Res. A270 (1988), 207–211.Google Scholar
  19. 19.
    P. Dahl et al., IEEE Trans. on Magnetics, Vol. 24, pages 723–725, March 1988.ADSCrossRefGoogle Scholar
  20. 20.
    E. Gregory et al., IEEE Trans. on Magnetics, Vol. 25, pages 1926–1929, March 1989.ADSCrossRefGoogle Scholar
  21. 21.
    H. Bruck, R. Meinke, F. Muller, P. Schmuser, DESY 89–041, March 1989.Google Scholar
  22. 22.
    D. Finley, D.A. Edwards, R.W. Ranft, R. Johnson, A.D.Mclnturff,J. Strait, FNAL FN-451, March 1987.Google Scholar
  23. 23.
    H. Barton et al, and R. Meinke, Performance of the Superc. Magnets for the HERA Accel., presented at this Conference.Google Scholar
  24. 24.
    K.H. Mess, DESY HERA 87–10, April 1987.Google Scholar
  25. 25.
    Ph. Lebrun, S. Pichler, T.M. Taylor, T. Tortschanoff, L.Walckiers, IEEE Trans. on Magn., Vol.24, pages 13611364, March 1988.Google Scholar
  26. 26.
    R. Anzolle, J. Perot, J.M. Rifflet, A. Fokken, O. Peters, S. Wolff, IEEE Trans. on Magnetics, Vol.25, pages 16601662, March 1989.Google Scholar
  27. 27.
    W. Hassenzahl, G. Gilbert, C. Taylor, R. Meuser, Proc. MT8, Grenoble, pages C1–271–277, 1983.Google Scholar
  28. 28.
    R. Perin, IEEE Trans. on Magn., Vol. 24, pages 734–740, March 1988.ADSCrossRefGoogle Scholar
  29. 29.
    A. Asner, R. Perin, S. Wenger, F. Zerobin, Paper presented at MT-11, Tsukuba, 28.8.-1. 9. 1989.Google Scholar
  30. 30.
    D. Leroy, R. Perin, G. de Rijk, W. Thomi, IREE Trans. on Magnetics, Vol. 24, pages 1373–1376, March 1988.ADSCrossRefGoogle Scholar
  31. 31.
    H.H.J.ten Kate et al., Paper presented at MT-11, Tsukuba, 28.8–1. 9. 1989.Google Scholar
  32. 32.
    Ph. Lebrun, D. Leroy, R. Perin, J. Vlogaert, A Mcinturff, Paper presented at MT-11, Tsukuba 28.8.-1. 9. 1989.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • R. Perin
    • 1
  1. 1.European Organization for Nuclear ResearchCERNGenevaSwitzerland

Personalised recommendations