Advertisement

Regulation of Expression of the Glycoprotein Genes of Herpes Simplex Virus Type 1 (HSV-1)

  • Myron Levine
  • Alexandra Krikos
  • Joseph C. Glorioso
  • Fred L. Homa
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 278)

Abstract

Herpes simplex virus (HSV) genes are expressed during infection as three groups; immediate early, early, and late, or α, β, and γ, in a coordinately regulated and sequentially ordered cascade manner (1, 2). The a genes are transcribed by the RNA polymerase II of the host cell in the absence of newly synthesized viral proteins. Functional a proteins are necessary for the transcription of β and γ genes (1, 2). The Q products are involved in the replication of viral DNA (3). Late genes constitute two subclasses, γ 1 and γ 2, differing in their dependence upon viral DNA synthesis for expression. Inhibition of viral DNA replication effects a moderate decrease in the accumulation of γ 1 mRNAs, whereas the messages of γ2 genes are not detected (4, 5). Most of the γ gene products are structural proteins of the virion. These structural proteins include at least seven envelope glycoproteins (6, 7, 8, 9), which are also found in the membranes of infected cells.

Keywords

Thymidine Kinase Thymidine Kinase Gene Glycoprotein Gene TATA Element TATA Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Honess, R. W. and Roizman, B. (1974) J. ViroL 11, 8–19.Google Scholar
  2. 2.
    Honess, R. W. and Roizman, B. (1975) Proc. Natl. Acari Sci. USA 72, 1276–1280.Google Scholar
  3. 3.
    Roizman, B. and Batterson, W. (1985) in Virology, ed. Fields, B. N. ( Raven, New York ), pp. 497–526.Google Scholar
  4. 4.
    Holland, L., Anderson, K., Shipman, C., Jr. and Wagner, E. (1980) Virology 101, 10–24.PubMedCrossRefGoogle Scholar
  5. 5.
    Jones, P. C. and Roizman, B. (1979) J. ViroL 31, 299–314.PubMedGoogle Scholar
  6. 6.
    Ackerman, M., Longnecker, R., Roizman, B. and Pereira, L. (1986) Virology 150, 207–220.CrossRefGoogle Scholar
  7. 7.
    Buckmaster, E. A., Gampels, V. and Minson, A. C. (1984) Virology 139, 408–413.PubMedCrossRefGoogle Scholar
  8. 8.
    Longnecker, R., Chatterjee, S., Whitley, R. J. and Roizman, B. (1987) Proc. NatL Acari Sci. USA 84, 4303–4307.Google Scholar
  9. 9.
    Spear, P. G. (1985) in Immunochemistry of Viruses, eds. Regenmortal, M. H. V. and Neurath, A. R. ( Elsevier, Amsterdam ), p. 435–445.Google Scholar
  10. 10.
    Mackern, S. and Roizman, B. (1982) Proc. Natl. Acad Sci. USA 79, 4917–4921.Google Scholar
  11. 11.
    McKnight, S. and Tjian, R. (1986) Cell (Cambridge, Mass.) 46, 795–805.CrossRefGoogle Scholar
  12. 12.
    Mackern, S. and Roizman, B. (1982) J. ViroL 44, 939–949.Google Scholar
  13. 13.
    Cordingley, M., Campbell, M. and Preston, C. M. (1983) Nucleic Acids Res. 11, 2347–2365.PubMedCrossRefGoogle Scholar
  14. 14.
    Preston, C. M., Cordingley, M. and Stow, N. (1984) J. Virol. 50, 708–716.PubMedGoogle Scholar
  15. 15.
    Post, L., Mackern, S. and Roizman, B. (1981) Cell (Cambridge, Mass.) 24, 555–565.CrossRefGoogle Scholar
  16. 16.
    Batterson, W. and Roizman, B. (1983) J. Virol. 46, 371–377.PubMedGoogle Scholar
  17. 17.
    Campbell, M., Palfreyman, J. and Preston, C. M. (1984) J. Mol. BioL 18, 1–19.CrossRefGoogle Scholar
  18. 18.
    Kristie, T. N. and Roizman, B. (1984) Proc. NatL Acari Sci. USA 81, 4065–4069.Google Scholar
  19. 19.
    Dalrymple, M. A., McGeoch, D. J., Davison, A. J. and Preston, C. M. (1985) Nucleic Acids Res. 13, 7865–7879.PubMedCrossRefGoogle Scholar
  20. 20.
    Pellett, P. E., McKnight, J. L. C., Jenkins, F. J. and Roizman, B. (1985) Proc. NatL Acari Sci. USA 82, 5870–5874.Google Scholar
  21. 21.
    O’Hare, P. and Goding, C. R. (1988) Cell (Cambridge, Mass.) 52, 435–445.CrossRefGoogle Scholar
  22. 22.
    O’Hare, P., Goding, C. R. and Haigh, A. (1988) EMBO J. 7, 4231–4238.PubMedGoogle Scholar
  23. 23.
    Gerster, T. and Roeder, R. G. (1988) Proc. Natl. Acad Sci. USA 85, 6347–6352.Google Scholar
  24. 24.
    McKnight, J. L. C., Kristie, T. M. and Roizman, B. (1987) Proc. NatL Acari Sci. USA 84, 7061–7065.CrossRefGoogle Scholar
  25. 25.
    Kemp, L. M. and Katchman, D. S. (1988) EMBO J. 7, 4239–4244.PubMedGoogle Scholar
  26. 26.
    Preston, C. M., Frame, M. C. and Campbell, M. E. M. (1988) Cell (Cambridge, Mass.) 52, 425–434.CrossRefGoogle Scholar
  27. 27.
    Triezenberg, S. J., LaMarco, K. L. and McKnight, S. L. (1988) Genes Dev. 2, 730–742.PubMedCrossRefGoogle Scholar
  28. 28.
    Zipser, D. L., Lipsich, L. and Kwoh, J. (1981) Proc. NatL Acari Sci. USA 78, 6276–6280.Google Scholar
  29. 29.
    Smiley, J. R., Swan, H., Pater, M., Pater, A. and Halpern, M. (1983) J. ViroL. 47, 301–310.PubMedGoogle Scholar
  30. 30.
    Halpern, M. E. and Smiley, J. R. (1984) J. ViroL 50, 733–738.PubMedGoogle Scholar
  31. 31.
    McKnight, S. L., Gavis, E. R., Kingsbury, R. and Axel, R. (1981) Cell (Cambridge, Mass.) 25, 385–398.CrossRefGoogle Scholar
  32. 32.
    McKnight, S. L. and Kingsbury, R. (1982) Science (Washington, D.C., 1883-) 217, 316–324.CrossRefGoogle Scholar
  33. 33.
    Coen, D. M., Weinheimer, S. P. and McKnight, S. L. (1986) Science (Washington, D.C., 1883-) 234, 53–59.CrossRefGoogle Scholar
  34. 34.
    Heine, J. W., Honess, R. W., Cassai, E. and Roizman, B. (1974) J. ViroL 14, 640–651.PubMedGoogle Scholar
  35. 35.
    Holland, T. C., Homa, F. L., Marlin, S. D., Levine, M. and Glorioso, J. (1984) J. ViroL 52, 566–574.PubMedGoogle Scholar
  36. 36.
    Homa, F. L., Purifoy, D. J. M., Glorioso, J. C. and Levine, M. (1986) J. Virol. 58, 281–289.PubMedGoogle Scholar
  37. 37.
    Homa, F. L., Otal, T. M., Glorioso, J. and Levine M. (1986) Mol. Cell. BioL 6, 3652–3666.PubMedGoogle Scholar
  38. 38.
    Homa, F. L., Glorioso, J. C. and Levine, M. (1988) Genes Dev. 2, 40–53.PubMedCrossRefGoogle Scholar
  39. 39.
    Weir, J. P. and Narayanan, P. R. (1988) Nucleic Acids Res. 16, 10267–10282.PubMedCrossRefGoogle Scholar
  40. 40.
    Johnson, P. A. and Everett, R. D. (1986) Nucleic Acids Res. 14, 8247–8264.PubMedCrossRefGoogle Scholar
  41. 41.
    Mavromara, P. and Roizman, B. (1989) Proc. Natl. Acad Sci. USA 86, 4071–4075.CrossRefGoogle Scholar
  42. 42.
    Shapira, M., Homa, F. L., Glorioso, J. C. and Levine, M. (1987) Nucleic Acids Res. 15, 3097–3111.PubMedCrossRefGoogle Scholar
  43. 43.
    Sacks, W. R., Greene, C. C., Aschman, D. P. and Schaffer, P. A. (1987) J. Virol. 55, 796–805.Google Scholar
  44. 44.
    McCarthy, A. M., McMahan, L. and Schaffer, P. A. (1989) J. ViroL 63, 18–27.PubMedGoogle Scholar
  45. 45.
    Sekulovich, R. E., Leary, K. and Sandri-Goldin, R. M. (1988) J. Viol. 62, 4510–4522.Google Scholar
  46. 46.
    Su, L. and Knipe, D. M. (1989) Virology 170, 496–504.PubMedCrossRefGoogle Scholar
  47. 47.
    Everett, R. D. (1987) J. Gen. ViroL 68, 2507–2513.Google Scholar
  48. 48.
    Rice, S. A., Su, L. and Knipe, D. M. (1989) J. Virol 63, 3399–3407.PubMedGoogle Scholar
  49. 49.
    Rice, S. A. and Knipe, D. M. (1988) J. Virol 62, 3814–3823.PubMedGoogle Scholar
  50. 50.
    Mavromara-Nazos, P. and Roizman, B. (1987) Virology 161, 593–598.PubMedCrossRefGoogle Scholar
  51. 51.
    Godowski, P. J. and Knipe, D. M. (1985) J. ViroL 55, 357–365.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Myron Levine
    • 1
  • Alexandra Krikos
    • 1
  • Joseph C. Glorioso
    • 2
  • Fred L. Homa
    • 3
  1. 1.Department of Human GeneticsUniversity of Michigan Medical SchoolAnn ArborUSA
  2. 2.Department of Microbiology, Biochemistry and Molecular BiologyUniversity of PittsburghPittsburghUSA
  3. 3.The Upjohn CompanyKalamazooUSA

Personalised recommendations