Advertisement

Topological Effects of EBNA 1 on oriP

  • Robert Orlowski
  • George Miller
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 278)

Abstract

Two processes are required in order to maintain a herpesvirus in a latent state: there must be a mechanism for the viral genome to persist in the cell, and there must be mechanisms to inhibit the expression of those replicative functions which would ordinarily lead to cell death. In the specific case of the Epstein-Barr herpesvirus (EBV), the genome is maintained by an interaction between EBNA 1 and a region of EBV DNA called oriP (1–3). This interaction permits the viral genome to remain extrachromosomal and to partition in concert with cell division. The switch from latency to expression of viral replicative functions is brought about by the ZEBRA gene product (4–7). In latency there must exist a mechanism for inhibiting ZEBRA expression, probably at the transcriptional level (8).

Keywords

Topological Effect Immunoaffinity Chromatography Supercoiled Plasmid Dyad Symmetry Dyad Symmetry Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yates, J., Warren, N. Reisman, N. and Sugden, B. (1985) Proc, Natl. Acad. Sci. USA 81, 3806–3810.CrossRefGoogle Scholar
  2. 2.
    Yates, J., Warren, N. and Sugden, B. (1985) Nature (London) 313, 812–815.CrossRefGoogle Scholar
  3. 3.
    Lupton, S. and Levine, A. J. (1985) Mol. CelL BioL 5, 2533–2542.PubMedGoogle Scholar
  4. 4.
    Countryman, J. and Miller, G. (1985) Proc. NatL Acad. Sci. USA 82, 4085–4089.Google Scholar
  5. 5.
    Countryman, J., Jenson, H., Seibl, R., Wolf, H. and Miller, G. (1987) J. ViroL 61, 3672–3679.PubMedGoogle Scholar
  6. 6.
    Chevallier-Greco, A., Manet, E., Chavrier, P., Mosnier, C., Daillie, J. and Sergeant, A. (1986) EMBO J. 5, 3243–3249.PubMedGoogle Scholar
  7. 7.
    Takada, K., Shimizu, V., Sakuma, S. and Ono, Y. (1986) J. Virol. 57, 1016–1022.PubMedGoogle Scholar
  8. 8.
    Taylor, N., Countryman, J., Rooney, C., Katz, D. and Miller, G. (1989) J. ViroL 63, 1721–1728.PubMedGoogle Scholar
  9. 9.
    Milman, G., Scott, A., Cho, M.-S., Hartman, S., Ades, D., Hayward, G., Ki, P.-F., August, J. and Hayward, S. (1985) Proc. Natl. Acad Sci. USA 82, 6300–6304.Google Scholar
  10. 10.
    Rawlins, D., Milman, G., Hayward, S. and Hayward, G. (1985) Cell (Cambridge, Mass.) 42, 859–868.CrossRefGoogle Scholar
  11. 11.
    Lauer, G., Pastrana, R., Sherley, J. and Ptashne, M. (1981) J. Mol. AppL Genet. 1, 139–147.PubMedGoogle Scholar
  12. 12.
    Milman, G. and Hwang, E. S. (1987) J. Virol. 61, 465–471.PubMedGoogle Scholar
  13. 13.
    Hearing, J., Lewis, A. and Levine, A. (1985) Virology 142, 215–220.PubMedCrossRefGoogle Scholar
  14. 14.
    Pearson, G. R., Vroman, B., Chase, B., Sculley, T., Hummel, M. and Kieff, E. (1983) J. Virol. 47, 193–201.PubMedGoogle Scholar
  15. 15.
    Panayotatos, N. and Wells, R. (1981) Nature (London) 289, 466–470.CrossRefGoogle Scholar
  16. 16.
    Peck, L. and Wang, J. (1983) Proc. Natl. Acad Sci. USA 80, 6206–6210.Google Scholar
  17. 17.
    Gahn, T. and Schildkraut, C. (1989) Cell (Cambridge, Mass.) 58, 527–535.CrossRefGoogle Scholar
  18. 18.
    Reisman, D. and Sugden, B. (1986) Mot Cell. BioL 6, 3838–46.Google Scholar
  19. 19.
    Sugden, B. and Warren, N. (1989) J. Virol. 63, 2644–2649.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Robert Orlowski
    • 1
  • George Miller
    • 1
    • 2
    • 3
  1. 1.Department of Molecular Biophysics and BiochemistryYale University School of MedicineNew HavenUSA
  2. 2.Department of PediatricsYale University School of MedicineNew HavenUSA
  3. 3.Department of Epidemiology and Public HealthYale University School of MedicineNew HavenUSA

Personalised recommendations