Advertisement

Methods to Measure Genotoxins in Wastewater: Evaluation with in vivo and in vitro Tests

  • Marten A. van der Gaag
  • Laury Gauthier
  • Arie Noordsij
  • Yves Levi
  • M. Nicoline Wrisberg
Part of the Environmental Science Research book series (ESRH, volume 39)

Abstract

Genotoxic carcinogens are black list substances, whose discharge via wastewater should be reduced by best technical means. Detection of carcinogens as such in wastewater is at present nearly impossible. Identification combined with a literature search on the toxic properties is therefore still a favored approach, for want of something better. A major part of the discharged effluent will escape scrutiny, however, either because identification is not possible, or because toxicological information about identified compounds is not available.

Keywords

Genotoxic Effect Mytilus Edulis Ames Test Gill Cell Ethyl Methane Sulphonate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    AWWA (1988) The search for surrogates. In Cooperative Research Report, KIWA-AWWA-RF, Denver, Colorado.Google Scholar
  2. 2.
    Barna, J. (1983) Ineffectiveness of irradiate spice mixture in DLT. Mutat. Res. 113:231.Google Scholar
  3. 3.
    Choroulinkoff, I., and A. Jaylet (1989) Contamination of aquatic systems and genetic effects (Part 4). In Aquatic Ecotoxicology. Fundamental Concepts and Methodologies, A. Boudo and F.S. Ribeyres, eds. CRC Press Inc. pp. 211–235.Google Scholar
  4. 4.
    Das, R.K., and N.K. Nanda (1986) Induction of micronuclei in peripheral erythrocytes of fish Heteropneustes fossilis by mitomycin C and paper mill effluent. Mutat. Res. 175:67–71.CrossRefGoogle Scholar
  5. 5.
    Denkhaus, R., W.O. Grabow, and O.W. Prozesky (1980) Removal of mutagenic compounds in a waste water reclamation system evaluated by means of the Ames Salmonella/microsome assay. Prog. Water Tech. 12:571–589.Google Scholar
  6. 6.
    De Raat, W.K., A.O. Hanstveit, and J.F. de Kreuk (1985) The role of mutagenicity testing in the ecotoxicological evaluation of industrial discharges into the aquatic environment. Fd. Chem. Tox. 23:33–41.Google Scholar
  7. 7.
    Dixon, D.R., and K.R. Clarke (1982) Sister chromatid exchange: A sensitive method for detecting damage caused by exposure to environmental mutagens in the chromosomes of adult Mytilus edulis. Mar. Biol. Lett. 3:163–172.Google Scholar
  8. 8.
    Harrison, F.L., and I.M. Jones (1982) An in vivo sister-chromatid exchange assay in the larvae of the mussel. Mytilus edulis: Response to 3 mutagens. Mutat. Res. 105:235–242.PubMedCrossRefGoogle Scholar
  9. 9.
    Hooftman, R.N. (1981) The induction of chromosomal aberrations in Nothobranchius rachowi after treatment with ethyl methane sul-phonate or benzo[α]pyrene. Mutat. Res. 91:347–352.PubMedCrossRefGoogle Scholar
  10. 10.
    Hooftman, R.N., and W.K. de Raat (1982) Induction of nuclear anomalies (micronuclei) in the peripheral blood erythrocytes of the eastern mudminnow, Umbra pygmaea, by ethyl methane sulphonate. Mutat. Res. 104:147–150.PubMedCrossRefGoogle Scholar
  11. 11.
    Jaylet, A., and C. Zoll (1989) Tests for the detection of genotoxins in fresh water. CRC Critical Reviews in Aquatic Toxicology. CRC Press, Inc. (in press)Google Scholar
  12. 12.
    Jaylet, A., P. Deparis, V. Ferrier, and S. Grinfield (1986) A new micronucleus test using peripherial blood erythrocytes of the newt Pleurodeles waltl to detect mutagens in fresh water pollution. Mutat. Res. 164:245–257.PubMedGoogle Scholar
  13. 13.
    Jaylet, A., P. Deparis, and D. Gaschignard (1986) Induction of micronuclei in peripherial erythrocytes of axolotl larvae following in vivo exposure to mutagenic agents. Mutagenesis 1:211–215.PubMedCrossRefGoogle Scholar
  14. 14.
    Kligerman, A.D. (1982) Fishes as biological detectors of the effects of genotoxic agents. In Mutagenicity, New Horizons in Genetic Toxicology, J. Heddle, ed., pp. 435–456.Google Scholar
  15. 15.
    Kramer, K.J.M., H.A. Jenner, and D. de Zwart (1989) The valve movement response of mussels: A tool in biological monitoring. Hydrobiologica (in press).Google Scholar
  16. 16.
    Majone, F., R. Brunetti, I. Gola, and A.G. Levis (1987) Persistence of micronuclei in the marine mussel, Mytilus galloprovincialis, after treatment with mitomycin C. Mutat. Res. 191:157–161.PubMedCrossRefGoogle Scholar
  17. 17.
    Maron, D.M., and B.N. Ames (1983) Revised method for the Salmonella mutagenicity test. Mutat. Res. 113:173–215.PubMedGoogle Scholar
  18. 18.
    Meier, J.R., W. Blazak, E.S. Riccio, B.E. Stewart, D.F. Bishop, and L.W. Condie (1987) Genotoxic properties of municipal wastewaters in Ohio. Arch. Env. Contam. Tox. 16:671–680.CrossRefGoogle Scholar
  19. 19.
    Noordsij, A., J. van Beveren, and A. Brandt (1983) Isolation of organic compounds from water for chemical analysis and toxicological testing. Intern. J. Env. and Analyt. Chem. 13:205–217.CrossRefGoogle Scholar
  20. 20.
    Pesch, G.G., and C.E. Pesch (1980) Neanthes arenaceodentata Polychaeta: Annelida), a proposed cytogenetic model for marine genetic toxicology. Can. J. Fish. Aquat. Sci. 37:1225–1228.CrossRefGoogle Scholar
  21. 21.
    Quillardet, P., and M. Hofnung (1985) The SOS chromotest, a colorimetric bacterial assay for genotoxins: Procedures. Mutat. Res. 147:65–78.PubMedGoogle Scholar
  22. 22.
    Rappaport, S.M., M.G. Richard, M.C. Hollstein, and R.E. Talcott (1979) Mutagenic activity in organic waste water concentrates. Env. Sci. Tech. 13:957–961.CrossRefGoogle Scholar
  23. 23.
    Slooff, W., and D. de Zwart (1987) Continuous effluent biomonitoring with an early warning system. Naturvardsverket Rapport 3275:20–21 (Stockholm).Google Scholar
  24. 24.
    Tates, A.D., I. Neuteboom, M. Hofker, and L. den Engelse (1980) A micronucleus technique for detecting clastogenic effects of mutagens/carcinogens (DEN, DMN) in hepatocytes of rat liver in vivo. Mutat. Res. 74:11–20.PubMedGoogle Scholar
  25. 25.
    Van de Kerkhoff, J.F.J., and M.A. van der Gaag (1985) Some factors affecting the differential staining of sister-chromatids in vivo in the fish Nothobranchius rachowi. Mutat. Res. 143:39–43.PubMedCrossRefGoogle Scholar
  26. 26.
    Van der Gaag, M.A., and J.F.J. van de Kerkhoff (1985) Mutagenicity testing of water with fish: A step forward to a reliable assay. Sci. Total Env. 47:293–298.CrossRefGoogle Scholar
  27. 27.
    Van der Gaag, M.A. (1989) Rapid detection of genotoxins in waste water: New perspectives with the sister-chromatid exchange assay in vivo with Nothobranchius rachowi. In Conference Proceedings of the First European Conference on Ecotoxicology, M. Løkke, H. Tyle, and F. Bro-Rasmussen, eds. Copenhagen 259–262.Google Scholar
  28. 28.
    Van der Hoeven, J.C.M., I.M. Bruggeman, G.M. Alink, and J.H. Koeman (1982) The killifish Nothobranchius rachowi, a new animal in genetic toxicology. Mutat. Res. 97:35–42.PubMedGoogle Scholar
  29. 29.
    Van Hummelen, P., C. Zoll, J. Paulussen, M. Kirsch-Volders, and A. Jaylet (1989) The micronucleus test in Xenopus: A new and simple in vivo technique for detection of mutagens in fresh water. Mutagenesis 4:12–16.PubMedCrossRefGoogle Scholar
  30. 30.
    Vigfusson, N.V., E.R. Vyse, C.A. Pernsteiner, and R.J. Dawson (1983). In vivo induction of sister-chromatid exchange in Umbra limi by the insecticides endrin, chlordane, diazinone and guthion. Mutat. Res., 118:61–68.PubMedCrossRefGoogle Scholar
  31. 31.
    Weaver, D.L., P.K. Hopke, J.B. Johnston, and M.J. Plewa (1981) Mutagenicity of Chicago municipal sewage sludge in the Salmonella/microsome reverse mutation assay. Env. Muta. 3:350.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Marten A. van der Gaag
    • 1
  • Laury Gauthier
    • 2
  • Arie Noordsij
    • 3
  • Yves Levi
    • 4
  • M. Nicoline Wrisberg
    • 5
  1. 1.Institute for Inland Water Management and Waste Water TreatmentLelystadThe Netherlands
  2. 2.Université Paul SabatierToulouseFrance
  3. 3.The Netherlands Waterworks Testing and Research InstituteNieuwegeinThe Netherlands
  4. 4.Compagnie Générale des EauxAnjou-RechercheMaisons-LafitteFrance
  5. 5.Technical University of DenmarkLyngbyDenmark

Personalised recommendations