Advertisement

Genotoxic and Carcinogenic Properties of Chlorinated Furanones: Important by-Products of Water Chlorination

  • J. R. Meier
  • A. B. DeAngelo
  • F. B. Daniel
  • K. M. Schenck
  • J. U. Doerger
  • L. W. Chang
  • F. C. Kopfler
  • M. Robinson
  • H. P. Ringhand
Part of the Environmental Science Research book series (ESRH, volume 39)

Abstract

Mutagenic activity is frequently detectable in organic concentrates of drinking water derived from surface waters (11). Because most mutagens tested to date are animal carcinogens and because mutagens may induce heritable alterations in germ cells, there is concern as to whether or not the presence of mutagenic chemicals in drinking water represent an acceptable human health risk. Identification of the mutagenic components of drinking water is needed before an accurate assessment of the health risks can be made. Methods have been developed for the isolation and identification of mutagens in drinking water (24), but the task of ascribing mutagenicity levels to specific chemical contaminants has proved difficult.

Keywords

Skin Tumor Mouse Bone Marrow Water Chlorination Genotoxic Activity Ethyl Carbamate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blakey, D.H., A.M. Duncan, M.J. Wargovich, M.T. Goldberg, W.R. Bruce, and J.A. Heddle (1985) Detection of nuclear anomalies in the colonic epithelium of the mouse. Cancer Res. 45:242–249.PubMedGoogle Scholar
  2. 2.
    Bull, R.J., M. Robinson, R.D. Laurie, E. Greisiger, J.R. Meier, and J. Stober (1984) Carcinogenic effects of acrylamide in Senear and A/J mice. Cancer Res. 44:107–111.PubMedGoogle Scholar
  3. 3.
    Daniel, F.B., D.L. Haas, and S.M. Pyle (1985) Quantitation of chemically induced DNA strand breaks via an alkaline unwinding assay. Analyt. Biochem. 144:390–402.PubMedCrossRefGoogle Scholar
  4. 4.
    Daniel, F.B., G.R. Olson, and J.A. Stober (1989) The induction of G.I. tract nuclear anomalies by 3-chloro-4(dichloromethyl)-5-hydroxy -2(5H)-furanone, a chlorine disinfection by-product, in the male B6C3F1 mouse (ms. in prep.).Google Scholar
  5. 5.
    Daniel, F.B., E.L.C. Lin, H.P. Ringhand, R.G. Miller, A.B. DeAn-gelo, and J.R. Meier (1989) 3-Chloro-4(dichloromethyl)-5-hydroxy-2(5H)-furanone, a potent mutagen isolated from chlorine-disinfected drinking water, forms DNA adducts in vivo (ms. in prep.).Google Scholar
  6. 6.
    Fielding, M., and H. Horth (1986) Formation of mutagens and chemicals during water treatment chlorination. Water Supply 4:103–126.Google Scholar
  7. 7.
    Goldberg, M.T., and P. Chidiac (1986) An in vivo assay for small intestine genotoxicity. Mutat. Res. 164:209–215.PubMedGoogle Scholar
  8. 8.
    Hemming, J., B. Holmbom, M. Reunanen, and L. Kronberg (1986) Determination of the strong mutagen, 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone in chlorinated drinking and humic waters. Chemosphere 15:549–556.CrossRefGoogle Scholar
  9. 9.
    Horth, H., M. Fielding, T. Gibson, H.A. James, and H. Ross (1989) Identification of mutagens in drinking water. Water Research Centre Technical Report. PRD 2038-M, Medmenham, England.Google Scholar
  10. 10.
    Kronberg, L., and T. Vartianen (1988) Ames mutagenicity and concentration of the strong mutagen 3-chloro-4-(dichloromethyl)-5-hy-droxy-2(5H)-furanone and of its geometric isomer (E)-2-chloro-3-(di-chloromethyl)-4-oxo-butenoic acid in chlorine-treated tap waters. Mutat. Res. 206:177–182.PubMedCrossRefGoogle Scholar
  11. 11.
    Loper, J.C. (1980) Mutagenic effects of organic compounds in drinking water. Mutat. Res. 76:241–268.PubMedGoogle Scholar
  12. 12.
    Maron, D.M., and B.N. Ames (1983) Revised methods for the Salmonella mutagenicity test. Mutat. Res. 113:173–215.PubMedGoogle Scholar
  13. 13.
    Meier, J.R. (1988) Genotoxic activity of organic chemicals in drinking water. Mutat. Res. 196:211–245.PubMedGoogle Scholar
  14. 14.
    Meier, J.R., R.D. Lingg, and R.J. Bull (1983) Formation of mutagens following chlorination of humic acid: A model for mutagen formation during drinking water treatment. Mutat. Res. 118:25–41.PubMedCrossRefGoogle Scholar
  15. 15.
    Meier, J.R., H.P. Ringhand, W.E. Coleman, J.W. Munch, R.P. Streicher, W.H. Kaylor, and K.M. Schenck (1985) Identification of mutagenic compounds formed during chlorination of humic acid. Mutat. Res. 157:111–122.PubMedCrossRefGoogle Scholar
  16. 16.
    Meier, J.R., W.F. Blazak, and R.B. Knohl (1987) Mutagenic and clastogenic properties of 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone, a potent bacterial mutagen in drinking water. Env.Muta. 10:411–424.CrossRefGoogle Scholar
  17. 17.
    Meier, J.R., R.B. Knohl, W.E. Coleman, H.P. Ringhand, J.W. Munch, W.H. Kaylor, R.P. Sreicher, and F.C. Kopfler (1987) Studies on the potent bacterial mutagen, 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone: Aqueous stability, XAD recovery and analytical determination in drinking water and in chlorinated humic acid solutions. Mutat. Res. 189:363–373.PubMedCrossRefGoogle Scholar
  18. 18.
    Meier, J.R., A.B. DeAngelo, F.B. Daniel, K.M. Schenck, M.F. Skelly, and S.L. Huang (1989) DNA adduct formation in bacterial and mammalian cells by 3-chloro-4-(dichloromethyl)-5-hydroxy-2-(5H)-furanone (MX). Env. Molec. Muta. 14(Suppl. 15): 128.Google Scholar
  19. 19.
    Meier, J.R., R.B. Knohl, B.A. Merrick, and C.L. Smallwood (1989) Importance of glutathione in the invitro detoxification of 3-chloro-4-dichloromethyl-5-hydroxy-2(5H)-furanone, an important mutagenic by-product of water chlorination. In Water Chlorination: Chemistry, Environmental Impact and Health Effects, Vol. 6, R.L. Jolley et al., eds. Lewis Publishers, Ann Arbor, MI (in press).Google Scholar
  20. 20.
    Perry, K.L., S.J. Elledge, B.B. Mitchell, L. Marsh, and G.C. Walker (1985) umuDC and mucAB operons whose products are required for UV light and chemical-induced mutagenesis: UmuD, MucA, and Lex A proteins share homology. Proc. Natl. Acad. Sci., USA 82:4331–4335.PubMedCrossRefGoogle Scholar
  21. 21.
    Ringhand, H.P., W.H. Kaylor, R.G. Miller, and F.C. Kopfler (1989) Synthesis of 3–14C- 3-chloro-4- (dichloromethyl) -5-hydroxy-2 (5H) -furanone and its use in a tissue distribution study in the rat. Chemosphere 18:2229–2236.Google Scholar
  22. 22.
    Schmid, W. (1976) The micronucleus test for cytogenetic analysis. In Chemical Mutagens, Principles and Methods for Their Detection, Vol. 4, A. Hollaender, ed. Plenum Press, New York, pp. 31–53.Google Scholar
  23. 23.
    Streicher, R.P., H. Zimmer, J.R. Meier, R.B. Knohl, F.C. Kopfler, W.E. Coleman, J.W. Munch, and K.M. Schenck (1989) Structure-mutagenic activity relationships in chlorinated α, β-unsaturated carbonyl compounds (sub. for publ.).Google Scholar
  24. 24.
    Tabor, M.W., and J.C. Loper (1985) Analytical isolation, separation and identification of mutagens from nonvolatile organics of drinking water. J. Env. Analyt. Chem. 19:281–318.CrossRefGoogle Scholar
  25. 25.
    Whong, W.-Z., Y.-E. Wen, J. Steward, and T. Ong (1986) Validation of the SOS/Umu test with mutagenic complex mixtures. Mutat. Res. 175:139–144.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • J. R. Meier
    • 1
  • A. B. DeAngelo
    • 1
  • F. B. Daniel
    • 1
  • K. M. Schenck
    • 1
  • J. U. Doerger
    • 1
  • L. W. Chang
    • 1
  • F. C. Kopfler
    • 2
  • M. Robinson
    • 2
  • H. P. Ringhand
    • 2
  1. 1.Genetic Toxicology Division Health Effects Research LaboratoryU.S. Environmental Protection AgencyCincinnatiUSA
  2. 2.Environmental Toxicology Division Health Effects Research LaboratoryU.S. Environmental Protection AgencyCincinnatiUSA

Personalised recommendations