Advertisement

Heterogeneous Distribution of L-DOPA Immunoreactivity in Dopaminergic Neurons of the Rat Midbrain

  • Hitoshi Okamura
  • Kunio Kitahama
  • Nicole Mons
  • Yoshitake Matsumoto
  • Yasuhiko Ibata
  • Michel Geffard
Part of the Advances in Behavioral Biology book series (ABBI, volume 38A)

Abstract

Behavioral and biochemical studies have supported the idea that the dopaminergic projection systems from the midbrain to the basal ganglia or to the limbic cortex could be a key role in motor or psychomotor functions.1,2 Midbrain dopamine (DA) neurons were first histochemically identified by the Falck-Hillarp formaldehyde histofluorescence technique,3,4 and later further analyzed by immunocytochemistry using antibodies against tyrosine hydroxylase (TH).5 Recent advances in immunological methodology has enabled the production of antibodies against cathecholamines themselves.6,7,8 Owing to these antisera, we could analyze the morphological status of DA or its precursor, L-DOPA, at the single cell level by immunocytochemical means.8,9,10 In the present study, we report the localization characteristics of L-DOPA in midbrain DA neurons of the rat brain defined by specific and sensitive antiserum raised against L-DOPA, and the subdivision of the dopaminergic neuronal cell group by L-DOPA immunostaining.

Keywords

Tyrosine Hydroxylase Basal Forebrain Limbic Cortex Sodium Metabisulfite Catecholamine Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. J. Bannon, and R. H. Roth, Pharmacology of mesocortical dopamine neurons, Pharmacol.Rev. 35: 53 (1983).PubMedGoogle Scholar
  2. 2.
    R. Y. Moore and F. E. Bloom, Central catecholamine neuron systems: anatomy and physiology of the dopamine systems, Annu.Rev.Neurosci. 1: 129 (1978).PubMedCrossRefGoogle Scholar
  3. 3.
    N. E. Anden, A. Carlsson, A. Dahlstrom, K. Fuxe, N. A. Hillarp, and K. Larsson, Demonstration and mapping out of nigrostriatal dopamine neurons, Life Sci. 3: 523 (1964).PubMedCrossRefGoogle Scholar
  4. 4.
    A. Dahlstrom, and K. Fuxe, Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons, Acta Physiol.Scand. 62 (Suppl. 232): 1 (1964).Google Scholar
  5. 5.
    T. Hökfelt, R. Martensson, A. Björklund, S. Kleinan, and M. Goldstein, Distributional maps of tyrosine-hydroxylaseimmunoreactive neurons in the rat brain, in “Handbook of Chemical Neuroanatomy, Vol.2”, A. Björklund and T. Hökfelt, ed., Elsevier, Amsterdam (1984).Google Scholar
  6. 6.
    M. Geffard, R. M. Buijs, P. Seguela, C. W. Poll, M. LeMoal, First demonstration of highly specific and sensitive antibodies against dopamine, Brain Res. 294: 161 (1984).PubMedCrossRefGoogle Scholar
  7. 7.
    N. Mons, and M. Geffard, Specific antisera against the catecholamines; L-3,4-dihydroxyphenylalamine, dopamine, noradrenaline and octopamine treated by an enzyme-linked immunosorbent assay, J.Neurochem. 48: 1826 (1987).PubMedCrossRefGoogle Scholar
  8. 8.
    N. Mons, N. Daniel, and M. Geffard, Visualization of L-3,4-dihydroxyphenylalamine in rat brain by using specific antibodies, Brain Res. 451: 403 (1988).PubMedCrossRefGoogle Scholar
  9. 9.
    H. Okamura, K. Kitahama, N. Mons, Y. Ibata, M. Jouvet, and M. Geffard, L-DOPA-immunoreactive neurons in the rat hypothalamic tuberai region, Neurosci.Lett. 95: 42 (1988).PubMedCrossRefGoogle Scholar
  10. 10.
    K. Kitahama, N. Mons, H. Okamura, M. Jouvet, and M. Geffard, Endogenous L-DOPA, its immunoreactivity in neurons of midbrain and its projection fields in the cat, Neurosci.Lett. 95: 47 (1988).PubMedCrossRefGoogle Scholar
  11. 11.
    I. Nagatsu, Y. Kondo, S. Inagaki, N. Karasawa, T. Kato, T. Nagatsu, Immunofluorescent studies on tyrosine hydroxylase: application for its axoplasmic transport, Acta.Histochem.Cytochem. 10: 494 (1977).CrossRefGoogle Scholar
  12. 12.
    K. Kitahama, M. Denoyer, B. Raynaud, C. Borri-Voltattorni, M. Weber, and M. Jouvet, Immunohistochemistry of aromatic L-amino acid decarboxylase in the cat forebrain, J.Comp.Neurol. 270: 337 (1988).PubMedCrossRefGoogle Scholar
  13. 13.
    L. A. Sternberger, “Immunocytochemistry”, Wiley, New York (1986).Google Scholar
  14. 14.
    A. Björklund, and O. Lindvall, Dopamine-cortaining systems in the CNS, in: “Handbook of Chemical Neuroanatomy, Vol. 2”, A. Björklund and T.Hòkfelt, eds., Elsevier, Amsterdam (1984).Google Scholar
  15. 15.
    S. Murakami, H. Okamura, G. Pelletier, and Y. Ibata, Differential colocalization of neuropeptide Y- and methionine-enkephalin-Arg6- Gly7-Leu8-like immunoreactivity in catecholaminergic neurons in the rat brain stem, J.Comp.Neurol. 281: 532 (1989).PubMedCrossRefGoogle Scholar
  16. 16.
    J. H. Fallon, and R. Y. Moore, Catecholamine innervation of the basal forebrain. IV. Topography of the dopamine projection to the basal forebrain and neostriatum, J.Comp.Neurol. 180: 545 (1978).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Hitoshi Okamura
    • 1
  • Kunio Kitahama
    • 2
  • Nicole Mons
    • 3
  • Yoshitake Matsumoto
    • 4
  • Yasuhiko Ibata
    • 1
  • Michel Geffard
    • 3
  1. 1.Department of AnatomyKyoto Prefectural University of MedicineKamikyo-ku, Kyoto, 602Japan
  2. 2.Department of PsychiatryKyoto Prefectural University of MedicineKamikyo-ku, Kyoto, 602Japan
  3. 3.Departemente Medecine Experimentale, Faculte de MedicineINSERM 1192 — CNRS UA 52LyonFrance
  4. 4.Laboratoire de NeuroimmunologieInstitut de Biochimie Cellulaire et Neurochimie du CNRSBordeauxFrance

Personalised recommendations