Skip to main content

Abstract

The level of mRNA for an amyloid precursor (APP770) containing a Kunitz-type trypsin inhibitor (PI) is elevated in the autopsied Alzheimer brain.1 However, the physiological significance of the augumented APP770 production has not been clarified thus far.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Tanaka, S. Nakamura, K. Ueda, M. Kameyama, S. Siojiri, Y.Takahashi, N. Kitaguchi, and H. Ito: Three types of amyloid protein precursor mRNA in human brain: Their differential expression in Alzheimer’s disease, Biochem.Biophys.Res.Commun. 157: 472 (1988).

    Article  PubMed  CAS  Google Scholar 

  2. P. Davies and A. J. F. Maloney: Selective loss of central cholinergic neurons in Alzheimer’s disease, Lancet 2: 1403 (1976).

    Article  PubMed  CAS  Google Scholar 

  3. K. Koshimura, T. Kato, I. Tohyama, S. Nakamura, and M. Kameyama: Qualitative abnormalities of choline acetyltransferase in Alzheimer type dementia, J.Neurol.Sci. 76: 143 (1986).

    Article  PubMed  CAS  Google Scholar 

  4. S. G. Younkin, B. Goodridge, J. Katz, G. Lockett, D. Nafziger, M. F. Usik, and L. H. Younkin: Molecular forms of acetylcholinesterase in Alzheimer’s disease, Fed.Proc. 45: 2982 (1986).

    PubMed  CAS  Google Scholar 

  5. M. M. Mesulam and M. A. Moran: Cholinesterases within neurofibrillary tangles related to age and Alzheimer’s disease, Ann.Neurol. 22: 223 (1987).

    Article  PubMed  CAS  Google Scholar 

  6. N. Kitaguchi, Y. Takahashi, Y. Tokushima, S. Shiojiri, and H. Ito: Novel precursor of Alzheimer’s disease amyloid protein shows protease inhibitory activity, Nature 331: 530 (1988).

    Google Scholar 

  7. E. G. Gray and V. P. Whittaker: The isolation of nerve endings from brain. An electron microscopic study of all fragments derived by homogenisation and centrifugation, J.Anat. 96: 79 (1962).

    PubMed  CAS  Google Scholar 

  8. J. M. Candy, J. Klinowski, R. H. Perry, E. K. Perry, A. Fairbairn, A. E. Oakley, T. A. Carpenter, J. R. Atack, G. Blessed, and J. A. Edwardson: Aluminosilicates and senile plaque formation in Alzheimer’s disease, Lancet 1: 354 (1986).

    Article  PubMed  CAS  Google Scholar 

  9. S. Nakamura, S. Kawashima, S. Nakano, T. Tsuji, and W. Araki: Sub-cellular distribution of acetylcholinesterase in Alzheimer’s disease: Abnormal localization and solubilization, J.Neural Trans., in press.

    Google Scholar 

  10. S. G. Younkin, C. Rosenstein, P. C. Collins, and T. I. Rasenberry: Cellular localization of the molecular forms of acetylcholinesterase in rat diaphragm, J.Biol.Chem. 257: 13630 (1982).

    PubMed  CAS  Google Scholar 

  11. R. G. Martin and B. N. Ames: A method for determining the sedimentation behavior of enzymes — Application to protein mixtures, J.Biol.Chem. 236: 1372 (1961).

    Google Scholar 

  12. S. Nakano, T. Kato, S. Nakamura, and M. Kameyama: Acetylcholinesterase activity in cerebrospinal fluid of patients with Alzheimer’s disease and senile dementia, J.Neurol.Sci. 75: 213 (1986).

    Article  PubMed  CAS  Google Scholar 

  13. C. D. Johnson and R. L. Russell: A rapid, simple radiometric assay for cholinesterase, suitable for multiple determinations, Anal. Biochem. 64: 229 (1975).

    CAS  Google Scholar 

  14. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall: Protein measurement with the Folin phenol reagent, J.Biol.Chem. 193: 265 (1951).

    PubMed  CAS  Google Scholar 

  15. D. H. Small and R. J. Simpson: Acetylcholinesterase undergoes autolysis to generate trypsin-like activity, Neurosci.Lett. 89: 223 (1988).

    Article  PubMed  CAS  Google Scholar 

  16. C. R. Abraham, D. J. Selkoe, and H. Potter: Immunochemical identification of the serine protease inhibitor a-l-antichymotrypsin in the brain amyloid deposits of Alzheimer’s disease, Cell 52: 487 (1988).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Nakamura, S. et al. (1990). Protease Inhibitor and Cholinergic System in Alzheimer’s Disease. In: Nagatsu, T., Fisher, A., Yoshida, M. (eds) Basic, Clinical, and Therapeutic Aspects of Alzheimer’s and Parkinson’s Diseases. Advances in Behavioral Biology, vol 38A. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5844-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5844-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5846-6

  • Online ISBN: 978-1-4684-5844-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics