Proteins and Proteolysis in the Pathogenesis of Alzheimer’s Disease

  • George G. Glenner
Part of the Advances in Behavioral Biology book series (ABBI, volume 38A)


Investigations concerning the pathogenesis of Alzheimer’s disease initially focused on neurotransmitters, enzymes involved in their synthesis and their neuronal receptors. It eventually became apparent that abnormalities in neurotransmitter systems were probably not the cause of Alzheimer’s disease, but rather the result of it, i.e. dead or dying neurons failed to synthesize the neurotransmitters and receptors found to be depleted in this disease. Since the major pathological findings in Alzheimer’s disease are neuronal loss, neurofibrillary tangles, senile plaques and cerebrovascular amyloidosis, a major emphasis on delineating the nature of these lesions appeared to offer an approach to the understanding of the nature of this disease. These studies employing protein chemistry have resulted in new pathologic concepts and the introduction of molecular biology in the deciphering of the pathogenesis of Alzheimer’s disease.


Amyloid Deposit Senile Plaque Amyloid Fibril Paired Helical Filament Cerebrovascular Amyloid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.D. Eanes and G.G. Glenner, X-ray diffraction studies of amyloid filaments, J. Histochem. Cytochem. 16: 673 (1968).PubMedCrossRefGoogle Scholar
  2. 2.
    G.G. Glenner, D. Ein, E.D. Eanes, H.A. Bladen, W. Terry, and D. Page, The creation of “amyloid” fibrils from Bence Jones proteins in vitro, Science 174: 712 (1971).PubMedCrossRefGoogle Scholar
  3. 3.
    G.G. Glenner, Amyloid deposits and amyloidosis: the Bfibrilloses (Medical Progress Report), N. Engl. J. Med. 302: 1283, 1333 (1980).PubMedCrossRefGoogle Scholar
  4. 4.
    G.G. Glenner, J.H. Henry, and S. Fujihara, Congophilic angiopathy in the pathogenesis of Alzheimer’s degeneration, Ann. Pathologie. 1: 120 (1981).Google Scholar
  5. 5.
    G.G. Glenner and C.W. Wong, Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein, Biochem. Biophys. Res. Commun. 120: 885 (1984).CrossRefGoogle Scholar
  6. 6.
    G.G. Glenner and C.W. Wong, Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein, Biochem. Biophvs. Res.Commun. 122: 1131 (1984).CrossRefGoogle Scholar
  7. 7.
    N.K. Robakis, H.M. Wisniewski, E.C. Jenkins, E.A. Devine-Gage, G.E. Houck, X.-L. Yao, N. Ramakrishna, G. Wolfe, W.P. Silverman, and W.T. Brown, Chromosome 21q21 sublocalisation of gene encoding beta-amyloid peptide in cerebral vessels and neuritic (senile) plaques of people with Alzheimer’s disease and Down’s syndrome (Letter), Lancet i: 384 (1987).Google Scholar
  8. 8.
    J. Kang, H.G. Lemaire, A. Unterbeck, K.H. Grzeschik, G. Multhaup, K. Beyreuther, and B. Muller Hill, The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell surface receptor, Nature 235: 733 (1987).CrossRefGoogle Scholar
  9. 9.
    T. Oltersdorf, L.C. Fritz, D.B. Schenk, I. Lieberburg, K.L. Johnson-Wood, E.C. Beattie, P.J. Ward, R.W. Blacher, H.F. Dovey, and S. Sinha, The secreted form of the Alzheimer’s amyloid precursor protein with the Kunitz domain is protease nexin-II, Nature 341: 144 (1989).PubMedCrossRefGoogle Scholar
  10. 10.
    P.H. St. George-Hyslop, R.E. Tanzi, R.J. Polinsky, J.L. Haines, L. Nee, P.C. Watkins, R.H. Myers, R.G. Feldman, D. Pollen, D. Drachman, J. Growdon, A. Bruni, J.-F. Foncin, D. Salmon, P. Frommelt, L. Amaducci, S. Sorbi, S. Piacentini, G.D. Stewart, W.J. Hobbs, P.M. Conneally, and J.F. Gusella, The genetic defect causing familial Alzheimer’s disease maps on chromosome 21, Science 235: 885 (1987).CrossRefGoogle Scholar
  11. 11.
    C.W. Wong, W.V. Quaranta, and G.G. Glenner, Neuritic plaques and cerebrovascular amyloid in Alzheimer’s disease are antigenically related, Proc. Natl. Acad. Sci. USA 82: 8729 (1985).PubMedCrossRefGoogle Scholar
  12. 12.
    B. Rumble, R. Retallack, C. Holbich, G. Simms, G. Multhaup, R. Martins, A. Hockey, P. Montgomery, K. Beyreuther, and C.L. Masters, Amyloid A4 protein and its precursor in Down’s syndrome and Alzheimer’s disease, N. Engl. J. Med. 320: 1446 (1989).PubMedCrossRefGoogle Scholar
  13. 13.
    G.G. Glenner, Future directions in amyloid research, in: “Amyloidosis”, J. Marrink and M.H. Van Rijswijk, eds., M. Nijhoff, Dordrecht (1986).Google Scholar
  14. 14.
    S.-I. Ikeda, D. Allsop, and G.G. Glenner, Morphology and distribution of plaque and related deposits in the brains of Alzheimer’s disease and control cases, Lab. Invest. 60: 113 (1989).Google Scholar
  15. 15.
    S.-I. Ikeda, N. Yanagisawa, D. Allsop, and G.G. Glenner, Evidence of amyloid B-protein immunoreactive early plaque lesions in Down’s syndrome brains, Lab. Invest. 61: 133 (1989).Google Scholar
  16. 16.
    S.-I. Ikeda, D. Allsop, and G.G. Glenner, Probable early pathological changes in the Alzheimer’s disease brain demonstrated by immunohistochemistry with anti-ß protein antibody, Human Pathol., in press.Google Scholar
  17. 17.
    J. Ghiso, F. Tagliavini, W.F. Timmers, and B. Frangione, Alzheimer’s disease amyloid precursor protein is present in senile plaques and cerebrospinal fluid: Immunohistochemical and biochemical characterization, Biochem. Biophys. Res. Commun. 163: 430 (1989).CrossRefGoogle Scholar
  18. 18.
    T. Miyakawa, A. Shimoji, R. Kuramoto, and Y. Higuchi, The relationship between senile plaques and cerebral blood vessels in Alzheimer’s disease and senile dementia: Morphological mechanisms of senile plaque production, Virchows Arch. [B] 40: 121, 1982.Google Scholar
  19. 19.
    J.-M. Delabar, D. Goldgaber, Y. Lamour, A. Nicole, J.-L. Huret, J. de Grouchy, P. Brown, D.C. Gajdusek, P.-M. Sinet, ß-amyloid gene duplication in Alzheimer’s disease and karyotypically normal Down’s syndrome, Science 235: 1390 (1987).PubMedCrossRefGoogle Scholar
  20. 20.
    H. Furuya, H. Sasaki, I. Goto, C.W. Wong, G.G. Glenner, and Y. Sakaki, Amyloid ß-protein gene duplication is not common in Alzheimer’s disease: Analysis by polymorphic restriction fragments, Biochem. Biophys. Res. Commun., 150: 75 (1988).CrossRefGoogle Scholar
  21. 21.
    C. Van Broeckhoven, A.M. Genthe, A. Vandenberghe, B. Horsthemke, H. Backhovens, P. Raeymaekers, W. Van Hul, A. Wehnert, J. Gheuens, P. Cras, M. Bruyland, J.J. Martin, M. Salbaum, G. Multhaup, C.L. Masters, K. Beyreuther, H.M.D. Gurling, M.J. Mullan, A. Holland, A. Barton, N. Irving, R. Williamson, S.J. Richards, and J.A. Hardy, Failure of familial Alzheimer’s disease to segregate with the A4-amyloid gene in several European families, Nature 329: 153 (1987).PubMedCrossRefGoogle Scholar
  22. 22.
    R.E. Tanzi, J.F. Gusella, P.C. Watkins, G.A.P. Bruns, P. St. George-Hyslop, M.L. Van Keuren, D. Patterson, S. Pagan, D.M. Kurnit, and R.L. Neve, Amyloid B protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus, Science 235: 880 (1987).PubMedCrossRefGoogle Scholar
  23. 23.
    D. Allsop, C.W. Wong, S. Ikeda, M. Landon, M. Kidd, and G.G. Glenner, Immunohistochemical evidence for the derivation of a peptide ligand from the amyloid ß-protein precursor of Alzheimer disease, Proc. Natl. Acad. Sci. USA, 85: 2790 (1988).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • George G. Glenner
    • 1
  1. 1.San Diego Pathology Department (M012)University of CaliforniaLa JollaUSA

Personalised recommendations