Tetrahydroisoquinoline Alkaloids in Neurodegenerative Disorders - Influence of Drug Treatment

  • Philippe Dostert
  • Margherita Strolin Benedetti
  • Gérard Dordain
Part of the Advances in Behavioral Biology book series (ABBI, volume 38A)


The presence of various 1,2,3,4-tetrahydroisoquinoline alkaloids in the human brain has been firmly established1–5 and the possible involvement of these alkaloids in the etiology of some neurodegenerative disorders, such as Parkinson’s disease, or in the craving for alcohol has been the object of many investigations and hypotheses.4–8


Urinary Excretion Tyrosine Hydroxylase Essential Tremor Pyruvic Acid Parkinsonian Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Sjöquist, A. Eriksson, B. Winblad, Brain salsolinol levels in alcoholics, Lancet I: 675 (1982).Google Scholar
  2. 2.
    B. Sjöquist, and C. Ljungquist, Identification and quantification of 1-carboxysalsolinol and salsolinol in biological samples by gas chromatography-mass spectrometry, J. Chromatogr. Biomed. Appl. 343: 1 (1985).CrossRefGoogle Scholar
  3. 3.
    N. Ung-Chhun, B.Y. Cheng, D.A. Pronger, P. Serrano, B. Chavez, R. Fernandez Perez, J. Morales, and M.A. Collins, Alkaloid adducts in human brain: coexistence of 1-carboxylated and noncarboxylated isoquinolines and ß-carbolines in alcoholics and nonalcoholics, Prog. Clin. Biol. Res. 183: 125 (1985).PubMedGoogle Scholar
  4. 4.
    T. Niwa, N. Takeda, N. Kaneda, Y. Hashizume, and T. Nagatsu, Presence of tetrahydroisoquinoline and 2-methyl-tetrahydroquinoline in parkinsonian and normal human brains, Biochem. Biophys. Res. Commun. 144: 1084 (1987).PubMedCrossRefGoogle Scholar
  5. 5.
    S. Ohta, M. Kohno, Y. Makino, O. Tachikawa, and M. Hirobe, Tetrahydroisoquinoline and 1-methyl-tetrahydroisoquinoline are present in the human brain: relation to Parkinson’s disease, Biomed. Res. 8: 453 (1987).Google Scholar
  6. 6.
    T. L. Perry, K. Jones, S. Hansen, and R.A. Wall, 4-Phenylpyridine and three other analogues of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine lack dopaminergic nigrostriatal neurotoxicity in mice and marmosets, Neurosci. Lett. 75: 65 (1987).PubMedCrossRefGoogle Scholar
  7. 7.
    T. Nagatsu, and M. Yoshida, An endogenous substance of the brain, tetrahydroisoquinoline, produces parkinsonism in primates with decreased dopamine, tyrosine hydroxylase and biopterin in the nigrostriatal regions, Neurosci. Lett. 87: 178 (1988).PubMedCrossRefGoogle Scholar
  8. 8.
    P. Dostert, M. Strolin Benedetti, and G. Dordain, Dopamine-derived alkaloids in alcoholism, Parkinson’s and Huntington’s diseases, J. Neural Transm. 74: 61 (1988).PubMedCrossRefGoogle Scholar
  9. 9.
    K. Suzuki, Y. Mizuno, and M. Yoshida, Inhibition of mitochondrial NADH-ubiquinone oxidoreductase activity and ATP synthesis by tetrahydroisoquinoline, Neurosci. Lett. 86: 105 (1988).PubMedCrossRefGoogle Scholar
  10. 10.
    M. Naoi, S. Matsuura, H. Parvez, T. Takahashi, Y. Hirata, M. Minami, and T. Nagatsu, Oxidation of N-methyl-1,2,3,4-tetrahydroisoquinoline into the N-methyl-isoquinolinium ion by monoamine oxidase, J. Neurochem. 52: 653 (1989).PubMedCrossRefGoogle Scholar
  11. 11.
    T. Nagatsu, MPTP and its relevance to Parkinson’s disease, Neurochem. Int. 11: 375 (1987).PubMedCrossRefGoogle Scholar
  12. 12.
    D. Dougan, D. Wade, P. Mearrick, Effects of L-dopa metabolites at a dopamine receptor suggest a basis for “on-off” effect in Parkinson’s disease, Nature 254: 70 (1975).PubMedCrossRefGoogle Scholar
  13. 13.
    R. D. Myers, Isoquinolines, beta-carbolines and alcohol drinking: involvement of opioid and dopaminergic mechanisms, Experientia 45: 436 (1989).PubMedCrossRefGoogle Scholar
  14. 14.
    M. Strolin Benedetti, V. Bellotti, E. Pianezzola, E. Moro, P. Carminati, and P. Dostert, Ratio of the R and S enantiomers of salsolinol in food and human urine, J. Neural Transm. 77: 47 (1989).CrossRefGoogle Scholar
  15. 15.
    Y. Makino, S. Ohta, O. Tachikawa, and M. Hirobe, Presence of tetrahydroisoquinoline and 1-methyl-tetrahydroisoquinoline in foods: compounds related to Parkinson’s disease, Life Sci. 43: 373 (1988).PubMedCrossRefGoogle Scholar
  16. 16.
    J. H. Robbins, Alkaloid formation by condensation of biogenic amines with acetaldehyde, Clin. Res. 16: 350 (1968).Google Scholar
  17. 17.
    A. Brossi, Mammalian TIQ’s: products of condensation with aldehydes or pyruvic acids? Prog. Clin. Biol. Res. 90: 123 (1982).Google Scholar
  18. 18.
    P. Dostert, M. Strolin Benedetti, and M. Dedieu, Ratio of enantiomers of salsolinol in human urine, Pharmacol. Toxicol. 60 [Supply 1: 13 (1987).Google Scholar
  19. 19.
    G. Dordain, P. Dostert, M. Strolin Benedetti, and V. Rovei, Tetrahydroisoquinoline derivatives and parkinsonism, in: “Monoamine oxidase and disease - Prospects for therapy with reversible inhibitors”, K.F. Tipton, P. Dostert, M. Strolin Benedetti, eds., Academic Press, London, 1984.Google Scholar
  20. 20.
    P. Dostert, M. Strolin Benedetti, G. Dordain, and D. Verney, Enantiomeric composition of urinary salsolinol in parkinsonian patients after Madopar, J. Neural Transm., in press.Google Scholar
  21. 21.
    K. J. Reinikainen, L. Paljarvi, T. Halonen, O. Malminen, V-M. Kosma, M. Laakso, and P.J. Riekkinen, Dopaminergic system and monoamine oxidase - B activity in Alzheimer’s disease, Neurobiol. Aging 9: 245 (1988).PubMedCrossRefGoogle Scholar
  22. 22.
    P. Dostert, M. Strolin Benedetti. V. Bellotti, G. Dordain, D. Vernay, D. Deffond, Urinary excretion of salsolinol enantiomers and 1,2dehydrosalsolinol in patients with degenerative dementia, in “Alzheimer’s disease - Epidemiology, Neuropathology, Neurochemistry and Clinics”, K. Maurer, P. Riederer, H. Beckmann, eds., Springer-Verlag, Vienna, in press.Google Scholar
  23. 23.
    M. Strolin Benedetti, P. Dostert, and P. Carminati, Influence of food intake on the enantiomeric composition of urinary salsolinol in man, J. Neural Transm. [GenSec] 78: 43 (1989).CrossRefGoogle Scholar
  24. 24.
    P. Dostert, M. Strolin Benedetti, P. Carminati, G. Dordain, D. Vernay, Urinary excretion of salsolinol and dehydrosalsolinol in alcoholics, Alcohol Alcohol. 24: 371 (1989).Google Scholar
  25. 25.
    L. Tampier, H.S. Alpers, and V.E. Davis, Influence of catecholaminederived alkaloids and ß-adrenergic blocking agents on stereo-specific binding of 3H-naloxone, Res. Commun. Chem. Pathol. Pharmacol. 17: 731 (1977).PubMedGoogle Scholar
  26. 26.
    M. G. Hamilton, M. Hirst, K. Blum, Opiate-like activity of salsolinol on the electrically stimulated guinea-pig ileum, Life Sci. 25: 2205 (1979).PubMedCrossRefGoogle Scholar
  27. 27.
    R. H. Fertel, J.E. Greenwald, R. Schwartz, L. Wong, and J. Bianchine, Opiate receptor binding and analgesic effects of the tetrahydroisoquinolines salsolinol and tetrahydropapaveroline, Res. Commun. Chem. Pathol. Pharmacol. 27: 3 (1980).PubMedGoogle Scholar
  28. 28.
    R. A. North, M.A. Collins, J.D. Milner, P.J. Karras, and D.J. Koziol, Tetrahydroisoquinolines do not act on opiate receptors in the guinea-pig ileum, Eur. J. Pharmacol. 71: 489 (1981).PubMedCrossRefGoogle Scholar
  29. 29.
    W. C. Koller, Alcoholism in essential tremor, Neurology 33: 1074 (1983).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Philippe Dostert
    • 1
  • Margherita Strolin Benedetti
    • 1
  • Gérard Dordain
    • 2
  1. 1.Farmitalia Carlo Erba, R&DErbamont GroupMilanItaly
  2. 2.Service of NeurologyHôpital NordClermont-FerrandFrance

Personalised recommendations