Biochemical Studies on Predisposition to Parkinson’s Disease

  • M. Sandler
  • Vivette Glover
Part of the Advances in Behavioral Biology book series (ABBI, volume 38A)


After the L-dopa revolution in the treatment of Parkinson’s disease (for review, see ref.1), there was a decade of consolidation, characterized by small but important variations on this therapeutic theme. However, in 1979, another great leap forward occurred when Davis et al. (2) clearly delineated the beginnings of the MPTP story. The sequence of events is now well known. Following that original publication, there was little interest until the phenomenon was rediscovered by Langston and his colleagues (3) in 1983, and the whole thing caught fire. Thus, a prodrug, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), had been discovered and shown to be neurotoxic only when converted by monoamine oxidase (MAO) B (4) to its quaternary ammonium derivative, 1-methyl-4-phenylpyridinium (MPP+). Administration of MPTP to man (2,3), or monkey (5) but not to rat (6) results in the best simulation of idiopathic Parkinson’s disease that we possess, which responds characteristically to L-dopa (5). The MPTP-treated monkey fails to develop the characteristic nigrostriatal lesions if pretreated with an MAO B inhibitor (7,8), a major signpost for what was to follow.


Monoamine Oxidase Chromaffin Granule Striatal Dopamine Depletion Brain Monoamine Oxidase Roasted Cocoa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Sandler, Catecholamine synthesis and metabolism in man (with special reference to parkinsonism), in: “Handbook of Experimental Pharmacology Vol. 33, Catecholamines”, H. Blaschko and E. Muscholl, eds., Springer, Berlin (1972).Google Scholar
  2. 2.
    G.C. Davis, A.C. Williams, S.P. Markey, M.H. Ebert, E.D. Caine, C. Reichert, M. Kopin, Chronic parkinsonism secondary to intravenous injection of meperidine analogues. Psychiat. Res., 1: 249–54 (1979).CrossRefGoogle Scholar
  3. 3.
    J.W. Langston, P.A. Ballard, J.W. Tetrud, I. Irwin, Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science, 219: 979–980 (1983).PubMedCrossRefGoogle Scholar
  4. 4.
    K. Chiba, A. Trevor, N. Castagnoli Jr. Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase. Biochem.Biophys. Res.Commun., 120: 574–578 (1984).PubMedCrossRefGoogle Scholar
  5. 5.
    R.S. Burns, C.C. Chiueh, S.P. Markey, M.H. Ebert, D.M. Jacobowitz, I.J. Kopin, A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,6-tetrahydropyridine. Proc.Nat.Acad.Sci. USA, 80: 4546–4550 (1983).PubMedCrossRefGoogle Scholar
  6. 6.
    C.C. Chiueh, S.P. Markey, R.S. Burns, J. Johannessen, A. Pert, I.J. Kopin, Neurochemical and behavioral effects of systemic and intranigral administration of N-methyl-4-phenyl-1,2,3,6tetrahydropyridine in the rat. Eur.J.Pharmacol., 100: 189–194 (1984).PubMedCrossRefGoogle Scholar
  7. 7.
    J.W. Langston, I. Irwin, E.B. Langston, L.S. Forno, Pargyline prevents MPTP-induced parkinsonism in primates. Science, 225: 1480–1482 (1984).PubMedCrossRefGoogle Scholar
  8. 8.
    G. Cohen, P. Pasik, B. Cohen, A. Leist, C. Mytilineou, M.D. Yahr, Pargyline and deprenyl prevent the neurotoxicity of 1-methyl4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in monkeys. Eur.J.Pharmacol, 106: 209–210 (1985).CrossRefGoogle Scholar
  9. 9.
    C.D. Ward, R.C. Duvoisin, S.E. Ince, J.D. Nutt, R. Eldridge, D.B. Calne, Parkinson’s disease in 65 pairs of twins and in a set of quadruplets. Neurology, 33: 815–824 (1983).PubMedCrossRefGoogle Scholar
  10. 10.
    R.C. Duvoisin, The cause of Parkinson’s disease, in: “Movement Disorders”, C.D. Marsden, S. Fahn, eds., Butterworth, London (1982).Google Scholar
  11. 11.
    K.B. Ebmeier, W.J. Mutch, S.A. Calder, J.R. Crawford, L. Stewart, J.O.A. Besson, Does idiopathic Parkinsonism in Aberdeen follow intrauterine influenza? J.Neurol.Neurosurg.Psychiat. 52: 911–913 (1989).PubMedCrossRefGoogle Scholar
  12. 12.
    C.H. Mattock, M. Marmot, G. Stern, Could Parkinson’s disease follow intra-uterine influenza?: A speculative hypothesis. J.Neurol. Neurosurg.Psychiat. 51: 753–756 (1988).PubMedCrossRefGoogle Scholar
  13. 13.
    M. Bleecker, Parkinsonism: a clinical marker of exposure to neurotoxins. Neurotoxicol.Teratol. 10: 475–478 (1988).PubMedCrossRefGoogle Scholar
  14. 14.
    C.D. Marsden and M. Sandler, The MPTP story: an introduction. J.Neural.Transm. Supp1. 20: 1–3 (1986).Google Scholar
  15. 15.
    J. Parkinson, An Essay on the Shaking Palsy, Sherwood, Neely and Jones, London (1817).Google Scholar
  16. 16.
    G. Stern, Did Parkinsonism occur before 1817? J.Neurol.Neurosurg. Psychiat. Special Supplement, 11–12 (1989).Google Scholar
  17. 17.
    C.M. Tanner, B. Chen, W. Wang, M. Peng, Z. Liu, X. Liang, L.C. Kao, D.W. Gilley, C.G. Goetz, B.S. Schoenberg, Environmental factors and Parkinson’s disease: A case-control study in China. Neurology, 39: 660–664 (1989).PubMedCrossRefGoogle Scholar
  18. 18.
    B.S. Schoenberg, Environment risk factors for Parkinson’s disease: the epidemiologic evidence. Can.J.Neurol.Sci., 14: 407–413 (1987).PubMedGoogle Scholar
  19. 19.
    C. Gibb, J. Willoughby, V. Glover, M. Sandler, B. Testa, P. Jenner, C.D. Marsden, Analogues of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine as monoamine oxidase substrates: a second ring is not necessary. Neurosci.Lett., 76: 316–322 (1987).PubMedCrossRefGoogle Scholar
  20. 20.
    S.K. Youngster, P.K. Sonsalla, B.A. Sieber, R.E. Heikkila, Structure-activity study of the mechanism of 1-methyl-4-phenyl-1,2,3,6tetrahydropyridine (MPTP)-induced neurotoxicity. I. Evaluation of the biological activity of MPTP analogs. J.Pharmacol.Exp.Ther., 249: 820–828 (1989).PubMedGoogle Scholar
  21. 21.
    S.K. Youngster, W.J. Nicklas, R.E. Heikkila, Structure-activity study of the mechanism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity. II. Evaluation of the biological activity of the pyridinium metabolites formed from the monoamine oxidase-catalyzed oxidation of MPTP analogs. J.Pharmacol.Exp.Ther., 249: 829–835 (1989).PubMedGoogle Scholar
  22. 22.
    R.E. Heikkila, M.V. Kindt, P.K. Sonsalla, A. Giovanni, S.K. Youngster, K.A. McKeown and T.P. Singer, Importance of monoamine oxidase A in the bioactivation of neurotoxic analogs of 1-methyl-4-phenyl-1,2,3,6tetrahydropyridine. Proc.Nat.Acad.Sci. USA, 85: 6172–6176 (1988).PubMedCrossRefGoogle Scholar
  23. 23.
    V. Glover, M. Sandler, F. Owen, C.J. Riley, Dopamine is a monoamine oxidase B substrate in man. Nature, 265: 80–81 (1977).PubMedCrossRefGoogle Scholar
  24. 24.
    P.C. Waldmeier, A. Delini-Stula, L. Maître, Preferential deamination of dopamine by an A type monoamine oxidase in rat brain. NaunynSchmiedeberg’s Arch.Pharmac., 292: 9–14 (1976).CrossRefGoogle Scholar
  25. 25.
    J.I. Sage, Tomatoes and Parkinson’s disease. Medical Hypotheses, 28: 75–79 (1988).CrossRefGoogle Scholar
  26. 26.
    K. Sakurai, K. Takahashi and T. Yoshida, Pyridine derivatives in peppermint oil. Agric.Biol.Chem., 47: 2307–2312 (1983).CrossRefGoogle Scholar
  27. 27.
    O.G. Vitzthum, P. Werhoff and P. Hubert, Volatile components of roasted cocoa: basic fraction. J.Food Sci., 40: 911–916 (1975).CrossRefGoogle Scholar
  28. 28.
    O.G. Vitzthum, P. Werkhoff and P. Hubert (1975), New volatile constituents of black tea aroma. J.Agric.Food Chem., 23: 999–1003 (1975).Google Scholar
  29. 29.
    T.L. Perry, K. Jones, S. Hansen and R.A. Wall, 2-Phenylpyridine and 3-phenylpyridine, constituents of tea, are unlikely to cause idiopathic Parkinson’s disease. J.Neurol.Sci., 85: 309–317 (1988).PubMedCrossRefGoogle Scholar
  30. 30.
    J.W. Langston and I. Irwin, Pyridine toxins, in: “Drugs for the Treatment of Parkinson’s disease”, D.B. Caine, ed., Springer, Berlin. (1989).Google Scholar
  31. 31.
    J.F. Reinhard, E.J. Diliberto Jr., O.H. Viveros and A.J. Daniels, Subcellular compartmentalization of 1-methyl-4-phenylpyridinium with catecholamines in adrenal medullary chromaffin vesicles may explain the lack of toxicity to adrenal chromaffin cells. Proc.Nat.Acad. Sci. USA, 84: 8160–8164 (1987).PubMedCrossRefGoogle Scholar
  32. 32.
    S.P. Wilson and J.F. Beeler, Catecholamine depletion and accumulation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridinium (MPP+) in adrenal medullary chromaffin cells. Neurochem.Int. 13: 333–343 (1988).PubMedCrossRefGoogle Scholar
  33. 33.
    J.F. Reinhard Jr., E.J. Diliberto Jr., and A.J. Daniels, Characterization of cellular transport, subcellular distribution, and secretion of the neurotoxicant 1-methyl-4-phenylpyridinium in bovine adrenomedullary cell cultures. J.Neurochem., 52: 1253–1259 (1989).PubMedCrossRefGoogle Scholar
  34. 34.
    F. Darchen, D. Scherman, C. Desnos and J-P. Henry, Characteristics of the transport of the quaternary ammonium 1-methyl-4-phenylpyridinium by chromaffin granules. Biochem.Pharmacol., 37: 4381–4387 (1988).PubMedCrossRefGoogle Scholar
  35. 35.
    J.W. Langston, Current theories on the cause of Parkinson’s disease. J.Neurol.Neurosurg.Psychiat., Special supplement, 13–17 (1989).Google Scholar
  36. 36.
    J. Willoughby, R.F. Cowburn, J.A. Hardy, V. Glover and M. Sandler, 1-Methyl-4-phenylpyridinium uptake by human and rat striatal synaptosomes. J.Neurochem., 52: 627–631 (1989).PubMedCrossRefGoogle Scholar
  37. 37.
    A.H.V. Schapira, J.M. Cooper, D. Dexter, P. Jenner, J.B. Clark, C.D. Marsden, Mitochondrial complex I deficiency in Parkinson’s disease. Lancet, i: 1269 (1989).Google Scholar
  38. 38.
    M. Sandler, The role of minor pathways of dopa metabolism, in: “L-Dopa and Parkinsonism”, A. Barbeau and F.H. McDowell, eds., Davis, Philadelphia (1970).Google Scholar
  39. 39.
    M. Sandler, Biokhimicheskie osnov’y bolyezny Parkinsona y lyechenye yiyo L-dopa (The biochemical basis of Parkinson’s disease and its treatment with L-dopa). Zh. Vcyesoyuz Khim.Obshch., 21: 190–196 (1976).Google Scholar
  40. 40.
    H. Saggu, J. Cooksey, D. Dexter, F.R. Wells, A. Lees, P. Jenner and C.D. Marsden, A selective increase in particulate superoxide dismutase activity in parkinsonian substantia nigra. J.Neurochem., 53: 692–697 (1989).PubMedCrossRefGoogle Scholar
  41. 41.
    J. Knoll, The striatal dopamine dependency of life span in male rats. Longevity study with (-)deprenyl. Mech.Ageing Devel., 46: 237–262 (1988).CrossRefGoogle Scholar
  42. 42.
    W. Birkmayer, J. Knoll, P. Riederer, M.D. Youdim, V. Mars, J. Marton, Increased life expectancy resulting from addition of L-deprenyl to Madopar treatment in Parkinson’s disease: a long-term study. J.Neural Transm., 64: 113–127 (1985).PubMedCrossRefGoogle Scholar
  43. 43.
    J.W. Tetrud and J.W. Langston, The effect of deprenyl (selegiline) on the natural history of Parkinson’s disease. Science, 245: 519–522. (1989).PubMedCrossRefGoogle Scholar
  44. 44.
    I. Shoulson, Experimental therapeutics directed at the pathogenesis of Parkinson’s disease, in: “Drugs for the treatment of Parkinson’s disease”, D.B. Caine, ed., Springer, Berlin (1989).Google Scholar
  45. 45.
    L.I. Golbe, T.M. Farrell, P.H. Davis, Case-control study of early life dietary factors in Parkinson’s disease. Arch.Neurol., 45: 1350–1353 (1988).PubMedCrossRefGoogle Scholar
  46. 46.
    J. Knoll, J. Dallo and T.T. Yen, Striatal dopamine, sexual activity and lifespan. Longevity of rats treated with (-)deprenyl. Life Sci., 45: 525–531 (1989).PubMedCrossRefGoogle Scholar
  47. 47.
    W. Schultz, E. Scarnati, E. Sundström and R. Romo, Protection against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism by the catecholamine uptake inhibitor nomifensine: behavioral analysis in monkeys with partial striatal dopamine depletions. Neuroscience, 31: 219–230 (1989).PubMedCrossRefGoogle Scholar
  48. 48.
    Hornykiewicz, Ageing and neurotoxins as causative factors in idiopathic Parkinson’s disease - a critical analysis of the neuro-chemical evidence. Neuro-Psychopharmacol.Biol.Psychiat., 13: 319–328 (1989).CrossRefGoogle Scholar
  49. 49.
    T. Niwa, Takeda, N., Kaneda, N., Hashizume, Y. and T. Nagatsu, Presence of tetrahydroisoquinoline and 2-methyltetrahydroquinoline in parkinsonian and normal human brains. Biochem.Biophys.Res.Commun., 144: 1084–1089 (1987).PubMedCrossRefGoogle Scholar
  50. 50.
    T. Niwa, N. Takeda, T. Sasaoka, N. Kaneda, Y. Hashizume, H. Yoshizumi, A. Tatematsu and T. Nagatsu, Detection of tetrahydroisoquinoline in parkinsonian brain as an endogenous amine by use of gas chromatography-mass spectrometry. J.Chromatogr., 491: 37–403 (1989).CrossRefGoogle Scholar
  51. 51.
    M. Naoi, S. Matsuura, T. Takahashi and T. Nagatsu, A N-methyltransferase in human brain catalyses N-methylation of 1,2,3,4tetrahydroisoquinoline into N-methyl-1,2,3,4-tetrahydroisoquinoline, a precursor of a dopaminergic neurotoxin, N-methylisoquinolinium ion. Biochem.Biophys.Res.Commun., 161: 1213–1219 (1989).PubMedCrossRefGoogle Scholar
  52. 52.
    R.G. Booth, N. Castagnoli Jr., and H. Rollema, Intracerebral microdialysis neurotoxicity studies of quinoline and isoquinoline derivatives related to MPTP/MPP+. Neurosci.Lett., 100: 306–312 (1989).PubMedCrossRefGoogle Scholar
  53. 53.
    T. Nagatsu and M. Yoshida, An endogenous substance of the brain, tetrahydroisoquinoline, produces parkinsonism in primates with decreased dopamine, tyrosine hydroxylase, and biopterin in the nigrostriatal regions. Neurosci.Lett., 87: 178–182 (1988).PubMedCrossRefGoogle Scholar
  54. 54.
    K. Suzuki, Y. Mizuno and M. Yoshida, Selective inhibition of complex I of the brain electron transport system by tetrahydroisoquinoline. Biochem.Biophys.Res.Commun., 162: 1541–1545 (1989).PubMedCrossRefGoogle Scholar
  55. 55.
    M. Sandler, (-)-Deprenyl in perspective: prophylaxis for Parkinson’s disease? J.Neural.Transm., Suppl 22: 107–115 (1986).Google Scholar
  56. 56.
    G.B. Steventon, M.T.E. Heafield, R.H. Waring and A.C. Williams, Xenobiotic metabolism in Parkinson’s disease. Neurology, 39: 883–887 (1989).PubMedCrossRefGoogle Scholar
  57. 57.
    R.H. Waring, G.B. Steventon, S.G. Sturman, M.T.E. Heafield, M.C.G. Smith, A.C. Williams, S-Methylation in motorneuron disease and Parkinson’s disease. Lancet, ii: 356–357 (1989).Google Scholar
  58. 58.
    R.A. Weisinger, L.M. Pinkus, W.B. Jakoby, Thiol S-methyltransferase: suggested role in detoxication of intestinal hydrogen sulfide. Biochem.Pharmacol. 29: 2885–2887 (1980).CrossRefGoogle Scholar
  59. 59.
    U.B. Gaitonde, R.J. Sellar, A.E. O’Hare, Long-term exposure to hydrogen sulphide producing subacute encephalopathy in a child. Br.Med.J. 294: 614 (1987).CrossRefGoogle Scholar
  60. 60.
    D.B. Caine, J.W. Langston, W.R.W. Martin, T.J. Ruth, M.J. Adam, B.D. Pate and M. Schulzer, Positron emission tomography after MPTP: observations relating to the cause of Parkinson’s disease. Nature, 317: 246–248 (1985).CrossRefGoogle Scholar
  61. 61.
    M. Guttman, V.W. Yong, S.U. Kim, D.B. Caine, W.R.W. Martin, M.J. Adam and T.J. Ruth, Asymptomatic striatal dopamine depletion: PET scans in unilateral MPTP monkeys. Synapse, 2: 469–473 (1988).PubMedCrossRefGoogle Scholar
  62. 62.
    V. Glover, M.A. Reveley, M. Sandler, A monoamine oxidase inhibitor in human urine. Biochem.Pharmac., 29: 467–470 (1980).CrossRefGoogle Scholar
  63. 63.
    M. Sandler, The emergence of tribulin. Trends Pharmac.Sci., 3: 471–472 (1982).CrossRefGoogle Scholar
  64. 64.
    V. Glover, S.K. Bhattacharya, M. Sandler, S.E. File, Benzodiazepines reduce stress-augmented increase in rat urine monoamine oxidase inhibitor. Nature, 292: 347–349 (1981).PubMedCrossRefGoogle Scholar
  65. 65.
    H. Petursson, M.A. Reveley, V. Glover, M. Sandler, Urinary MAO inhibitor in psychiatric illness. Psychiat.Res., 5: 335–340 (1981).CrossRefGoogle Scholar
  66. 66.
    H. Petursson, S.K. Bhattacharya, V. Glover, M. Sandler, M.H. Lader, Urinary monoamine oxidase inhibitor and benzodiazepine withdrawal. Br.J.Psychiat., 140: 7–10 (1982).CrossRefGoogle Scholar
  67. 67.
    I. Armando, V. Glover, M. Sandler, Distribution of endogenous benzodiazepine receptor ligand-monoamine oxidase inhibitory activity (tribulin) in tissues. Life Sci., 38: 2063–2067 (1986).PubMedCrossRefGoogle Scholar
  68. 68.
    V. Glover, A. Clow, G.F. Oxenkrug and M. Sandler, Effect of stress on the inhibition of rat brain monoamine oxidase (MAO) A and B by phenelzine. Pharmac.Res.Commun., Supp1. 4, 20: 139–140 (1988).Google Scholar
  69. 69.
    V. Glover, M. Sandler, Tribulin and Stress: Clinical studies on a new neurochemical system, in: “Neurobiological Aspects of Panic Disorder” J. Ballenger, ed., Alan R. Liss, New York, in press.Google Scholar
  70. 70.
    V. Glover, J.M. Halket, P.J. Watkins, A. Clow, B.L. Goodwin and M. Sandler, Isatin: identity with the purified endogenous monoamine oxidase inhibitor tribulin. J.Neurochem., 51: 656–659 (1988).PubMedCrossRefGoogle Scholar
  71. 71.
    A. Ueki, J. Willoughby, V. Glover, M. Sandler, K. Stibbe and G.M. Stern, Endogenous urinary monoamine oxidase inhibitor excretion in Parkinson’s disease and other neurobiological disorders. J.Neural Transm., in press.Google Scholar
  72. 72.
    S.L. Walsh, G.C. Wagner, Age-dependent effects of 1-methy1–4phenyl-1,2,3,6-tetrahydropyridine (MPTP): correlation with monoamine oxidase-B. Synapse, 3: 308–314 (1989).PubMedCrossRefGoogle Scholar
  73. 73.
    V.W. Yong and T.L. Perry, Monoamine oxidase B, smoking, and Parkinson’s disease. J.Neurol.Sci., 72: 265–272 (1986).PubMedCrossRefGoogle Scholar
  74. 74.
    A. Lucas, Nutritional physiology: dietary requirements of term and preterm infants, in: “Textbook of Neonatology”. N.C.R. Robertson, ed., Churchill Livingstone, Edinburgh (1986).Google Scholar
  75. 75.
    A.L. De Blas and L. Sangameswaran, Demonstration and purification of an endogenous benzodiazepine from the mammalian brain with a monoclonal antibody to benzodiazepines. Life Sci., 39: 1927–1936 (1986).PubMedCrossRefGoogle Scholar
  76. 76.
    J. Wildmann, W. Vetter, U.B. Ranalder, K. Schmidt, R. Maurer and H. Möhler, Occurrence of pharmacologically active benzodiazepines in trace amounts in wheat and potato. Biochem.Pharmacol., 37: 3549–3559 (1988).PubMedCrossRefGoogle Scholar
  77. 77.
    E. Unseld, D.R. Krishna, C. Fischer and U. Klotz, Detection of desmethyldiazepam and diazepam in brain of different species and plants. Biochem.Pharmacol., 38: 2473–2478 (1989).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • M. Sandler
    • 1
  • Vivette Glover
    • 1
  1. 1.Bernhard Baron Research LaboratoriesQueen Charlotte’s and Chelsea HospitalLondonUK

Personalised recommendations