Advertisement

Effect of Aging on NADPH-Diaphorase Neurons in Laterodorsal Tegmental Nucleus and Striatum of Senescence Accelerated Mouse (SAM)

  • Toshio Kawamata
  • Shinichi Nakamura
  • Ichiro Akiguchi
  • Jun Kimura
  • Masakuni Kameyama
  • Hiroshi Kimura
  • Toshio Takeda
Part of the Advances in Behavioral Biology book series (ABBI, volume 38A)

Abstract

Age-related reduction of neuronal number and/or size has been reported in some brain regions of human and experimental animals. Of particular interest are the age-related alterations of cholinergic neurons in the basal forebrain. This cholinergic cell group sends ascending projections into the neocortex, amygdala and hippocampus, and may be associated with memory and cognitive function, both of which are affected in older experimental animals. In fact, neuronal size is reduced in this cholinergic cell group in aged rodents [1, 2]. In addition to the basal forebrain cholinergic neurons, a conspicuous cell group in the pedunculopontine tegmental nucleus (TPP) and laterodorsal tegmental nucleus (TLD) of several species has been described to be cholinergic [3]. This cholinergic cell group in the hindbrain also gives rise to widespread ascending or descending projections to various regions.

Keywords

Cholinergic Neuron Basal Forebrain Progressive Supranuclear Palsy Basal Forebrain Cholinergic Neuron Pedunculopontine Tegmental Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hornberger, J. C., S. J. Buell, D. G. Flood, T. H. McNeill and P. D. Coleman. Stability of numbers but not size of mouse forebrain cholinergic neurons to 53 months. Neurobiol. Aging 6: 269–275 (1985).PubMedCrossRefGoogle Scholar
  2. 2.
    Mesulam, M. M., E. J. Mufson and J. Rogers. Age-related shrinkage of cortically projecting cholinergic neurons: a selective effect. Ann. Neurol. 22: 31–36 (1987).PubMedCrossRefGoogle Scholar
  3. 3.
    Kimura, H., P. L. McGeer and J. H. Peng. Choline-acetyltransferase containing neurons in the rat brain, in: “Handbook of Chemical Neuroanatomy, vol.3, Classical transmitters and transmitter receptors in the CNS, Part II”, edited by A Bjorklund, T Hokfelt, MJ Kuhar, Amsterdam: Elsevier pp. 51–67 (1984).Google Scholar
  4. 4.
    Nakamura, S., T. Kawamata, T. Kimura, I. Akiguchi, M. Kameyama, N. Nakamura, Y. Wakata and H. Kimura. Reduced nicotinamide adenine dinucleotide phosphatediaphorase histochemistry in the pontomesencephlic region of the human brainstem. Brain Res. 455: 144–147 (1988).PubMedCrossRefGoogle Scholar
  5. 5.
    Vincent, S. R., O. Johansson, T. Hokfelt, L. Skirboll, R. P. Elde, L. Terenius, J. Kimmel and M. Goldstein. NADPH-diaphorase: a selective histochemical marker for striatal neurons containing both somatostatin and avian pancreatic polypeptide (APP)-like immunoreactivities. J. Comp. Neurol. 217: 252–263 (1983).PubMedCrossRefGoogle Scholar
  6. 6.
    Takeda, T., M. Hosokawa, S. Takesita, M. Irino, K. Higuchi, T. Matsushita, Y. Tomita, K. Yasuhira, H. Hamamoto, K. Shimizu, M. Ishii and T. Yamamuro. A new murine model of accelerated senescence. Mech. Ageing Dev. 17: 183–194 (1981).PubMedCrossRefGoogle Scholar
  7. 7.
    Yagi, H., S. Katoh, I. Akiguchi and T. Takeda. Age-related deteriolation of ability of acquisition in memory and learning in senescence accelerated mouse:SAM-P/8 as an animal model of disturbance in recent memory. Brain Res. 474: 89–93 (1988).CrossRefGoogle Scholar
  8. 8.
    Scherer-Singler, U., S. R. Vincent, H. Kimura and E. G. McGeer. Demonstration of a unique population of neurons with NADPH-diaphorase histochemistry. J. Neurosci. Meth. 9: 229–234 (1983).CrossRefGoogle Scholar
  9. 9.
    Bowen, D. M. Selective vulnerability of cholinergie neurons in human brain, in: “Cellular Ageing”, edited by H.W. Sauer. Basel: S. Karger, pp. 42–59 (1984).Google Scholar
  10. 10.
    Zweig, R. M., P. J. Whitehouse, M. F. Casanova, L. C. Walker, W. R. Jankel and D. L. Price. Loss of pedunculopontine neurons in progressive supranuclear palsy. Ann. Neurol. 22: 18–25 (1987).PubMedCrossRefGoogle Scholar
  11. 11.
    Mufson, E. J., D. C. Mash and L. B. Hersh. Neurofibrillary tangles in cholinergie pedunclopontine neurons in Alzheimer’s disease. Ann. Neurol. 24: 623–629 (1988).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Toshio Kawamata
    • 1
  • Shinichi Nakamura
    • 1
  • Ichiro Akiguchi
    • 1
  • Jun Kimura
    • 1
  • Masakuni Kameyama
    • 3
  • Hiroshi Kimura
    • 4
  • Toshio Takeda
    • 2
  1. 1.Department of Neurology, Faculty of Medicine, Chest Disease Research InstituteKyoto UniversityKyoto 606Japan
  2. 2.Division of Senescence Biology, Chest Disease Research InstituteKyoto UniversityKyoto 606Japan
  3. 3.Sumitomo HospitalOsaka 530Japan
  4. 4.Division of Neuroanatomy, Institute of Molecular NeurobiologyShiga University of Medical ScienceOtsuJapan

Personalised recommendations