Trophic Effects of Hippocampus Cell Membrane Fragments on Cultured Medial Septal Cholinergic Neurons

  • Yoshihiko Ide
  • Hidetoshi Okabe
  • Kosei Ojika
  • Stanley H. Appel
Part of the Advances in Behavioral Biology book series (ABBI, volume 38A)


In the developmental stage of the nervous system, synaptogenesis plays an important role in the survival of pre-and postsynaptic neurons. Presynaptic neurons die if they do not have synaptic contact with an optimal number of postsynaptic target neurons.1 Conversely, neurite outgrowth and neurotransmitter synthesis in presynaptic neurons are promoted by co-culture with postsynaptic neurons.2 The mechanisms of these phenomena are not yet clear; however it has been postulated that the presynaptic growth cones may recognize a specific molecule of the postsynaptic target neurons.3


Trophic Effect Membrane Fragment Synaptic Membrane Presynaptic Neuron Cholinergic Activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. C. Prestige, The control of cell number in the lumbar spinal ganglia during the development of Xenopus laevis tadpoles, J. Embryol. Exp. Morphol. 17: 453 (1967)PubMedGoogle Scholar
  2. 2.
    A. Prochiantz, U. Di Porzio, A. Kato, B. Berger, J. Glowinski, In vitro maturation of mesencephalic dopaminergic neurons from mouse embryo is enhanced in presence of their striatal target cells, Proc. Natl. Acad. Sci. U.S.A. 76: 5387 (1979)PubMedCrossRefGoogle Scholar
  3. 3.
    F. Bonhoeffer, J. Huf, Recognition of cell types by axonal growth cones in vitro, Nature 288: 162 (1980)PubMedCrossRefGoogle Scholar
  4. 4.
    J. E. Bottenstein, G. H. Sato, Growth of a rat neuroblastoma cell line in serum-free supplemented medium, Proc. Natl. Acad. Sci. U.S.A. 76: 514 (1979)PubMedCrossRefGoogle Scholar
  5. 5.
    E. G. Gray, V. P. Wittaker, The isolation of nerve endings from brain: an electron-microscopic study of cell fragments derived by homogenization and centrifugation, J. Anat. 96: 79 (1962)PubMedGoogle Scholar
  6. 6.
    F. Fonnum, Isolation of choline esters from aqueus solutions by extraction with sodium tetraphenylboron in organic solvents, Biochem. J. 113: 291 (1969)PubMedGoogle Scholar
  7. 7.
    R. G. Smith, J. McManaman, S. H. Appel, Trophic effects of skeletal muscle extracts on ventral spinal cord neurons in vitro: separation of a protein with morphologic activity from proteins with cholinergie activity, J. Cell. Biol. 101: 1608 (1985)PubMedCrossRefGoogle Scholar
  8. 8.
    B. Crain, C. Cotman, D. Taylor, G. Lynch, A quantitative electron microscopic study of synaptogenesis in the dentate gyrus of the rat, Brain Res. 63: 195 (1973)PubMedCrossRefGoogle Scholar
  9. 9.
    A. Prochiantz, M. C. Daguet, A. Herbert, J. Glowinski, Specific stimulation of in vitro maturation of mesencephalie dopaminergic neurones by striatal membranes, Nature 293: 570 (1981)PubMedCrossRefGoogle Scholar
  10. 10.
    J. Eiehberg, V.P. Wittaker, R. M. Dawson, Distribution of lipids in subcellular particles of guinea-pig brain, Biochem. J. 92: 91 (1964)Google Scholar
  11. 11.
    K. G. Lloyd, L. Davidson, 3H-GABA binding in brains from Huntington’s chorea patients: altered regulation by phospholipids?, Science 205: 1147 (1979)PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Yoshihiko Ide
    • 2
  • Hidetoshi Okabe
    • 1
  • Kosei Ojika
    • 1
  • Stanley H. Appel
    • 1
  1. 1.Department of NeurologyBaylor College of MedicineHoustonUSA
  2. 2.Department of NeurologyKanazawa UniversityKanazawa 920Japan

Personalised recommendations