Alterations in Muscarinic Cholinergic Receptors and the Second Messenger System in the Cerebral Cortex in Alzheimer-Type Dementia

  • Norio Ogawa
  • Kiminao Mizukawa
  • Kumiko Haba
  • Kazuo Yoshizawa
  • Ichiro Kanazawa
Part of the Advances in Behavioral Biology book series (ABBI, volume 38A)


In Alzheimer-type dementia (ATD), the major finding has been the marked decrease in choline acetyltransferase (CAT), an acetylcholine (ACh) synthesizing enzyme, in the cerebral cortex and hippocampus (1). Thus, decreased neuronal function of the ACh system is believed to play the key role in the pathophysiological mechanisms of ATD.


Muscarinic Receptor Thyrotropin Release Hormone Senile Dementia Messenger System Muscarinic Cholinergic Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Hardy, R. Adolfsson, I. Alafuzoff, G. Bucht, J. Marcusson, P. Nyberg, E. Perdahl, P. Wester and B. Winblad, Transmitter deficits in Alzheimer’s disease, Neurochem. Int. 7: 545 (1985).PubMedCrossRefGoogle Scholar
  2. 2.
    D. A. Drachman and J. Leavitt, Human memory and the cholinergic system. A relationship to aging?, Arch. Neurol. 30: 113 (1974).PubMedCrossRefGoogle Scholar
  3. 3.
    D. A. Drachman, Memory and cognitive function in man; Does the cholinergic system have a specific role?, Neurology 27: 783 (1977).PubMedCrossRefGoogle Scholar
  4. 4.
    M. C. Olianas, P. Onali, N. H. Neff and E. Costa, Adenylate cyclase activity of synaptic membranes from rat striatum. Inhibition by muscarinic receptor agonists, Mol. Pharmacol. 23: 393 (1983).PubMedGoogle Scholar
  5. 5.
    F. J. Ehlert, The relationship between muscarinic receptor occupancy and adenylate cyclase inhibition in the rabbit myocardium, Mol. Pharamacol. 28: 410 (1985).PubMedGoogle Scholar
  6. 6.
    E. Brown, D. A. Kendall and S. R. Nahorski, Inositol phospholipid hydrolysis in rat cerebral cortical slices: I. Receptor characterisation, J. Neurochem. 42: 1379 (1984).PubMedCrossRefGoogle Scholar
  7. 7.
    M. D. Jacobson, M. Wusteman and C.P. Downes, Muscarinic receptors and hydrolysis of inositol phospholipids in rat cerebral cortex and parotid gland, J. Neurochem. 44: 465 (1985).PubMedCrossRefGoogle Scholar
  8. 8.
    R. A. Gonzales and F. T. Crews, Cholinergic-and adrenergicstimulated inositide hydrolysis in brain: interaction, regional distribution, and coupling mechanisms, J. Neurochem. 45: 1076 (1985).PubMedCrossRefGoogle Scholar
  9. 9.
    P. J. Pfaffinger, J. M. Martin, D. D. Hunter, N. M. Nathanson and B. Hille, GTP-binding proteins couple cardiac muscarinic receptors to a K channel, Nature 317: 536 (1985).PubMedCrossRefGoogle Scholar
  10. 10.
    P. White, C. R. Hiley, M. J. Goodhardt, L. H. Carrasco, J. P. Keet, I. E. I. Williams and D. M. Bowen, Neocortical cholinergic neurons in elderry people, Lancet i: 668 (1977).CrossRefGoogle Scholar
  11. 11.
    P. Davies and A. H. Verth, Regional distribution of muscarinic acetylcholine receptors in normal and Alzheimer’s type dementia brains, Brain Res. 138: 385 (1978).CrossRefGoogle Scholar
  12. 12.
    T. D. Reisine, H. I. Yamamura, E. D. Bird, E. Spokes and S. J. Enna, Pre-and postsynaptic neurochemical alterations in Alzheimer’s disease, Brain Res. 159: 477 (1978).PubMedCrossRefGoogle Scholar
  13. 13.
    J. O. Rinne, J. K. Rinne, K. Laakso, L. Paljarvi and U. K. Rinne, Reduction in muscarinic receptor binding in limbic areas of Alzheimer brain, J. Neurol. Neurosurg. Psychiatry 47: 651 (1984).PubMedCrossRefGoogle Scholar
  14. 14.
    N. Ogawa, K. Mizukawa, Y. Hirose, S. Kajita, S. Ohara and Y. Watanabe, MPTP-induced parkinsonian model in mice: biochemistry, pharmacology and behavior, Eur. Neurol. 26 (suppl.1): 16 (1987).PubMedCrossRefGoogle Scholar
  15. 15.
    N. Ogawa, K. Mizukawa and I. Sora, Chronic dihydroergotoxine administration increases muscarinic cholinergic receptor binding in aged-rat brain, Res. Commun. Chemical Pathol. Pharmacol. 57: 149 (1987).Google Scholar
  16. 16.
    D. R. Gehlert, T. M. Dawson, F. M. Filoux, E. Sanna, I. Hanbauer andJ. K. Wamsley, Evidence that [H]forskolin binding in the substantia nigra is intrinsic to a striatal-nigral projection: an autoradiographic study of rat brain, Neurosci. Lett. 73: 114 (1987).PubMedCrossRefGoogle Scholar
  17. 17.
    P. F. Worley, J. M. Baraban and S. H. Snyder, Heterogeneous localization of protein kinase C in rat brain: autoradiographic analysis of phorbol ester receptor binding, J. Neuroscience 6: 199 (1986).Google Scholar
  18. 18.
    N. Ogawa, S. Mizuno, I. Nukina, S. Tsukamoto and A. Mori, Chronic thyrotropin releasing hormone (TRH) administration on TRH receptors and muscarinic cholinergic receptors in CNS, Brain Res. 263: 348 (1983).PubMedCrossRefGoogle Scholar
  19. 19.
    P. J. Whitehouse, D. L. Price, R. G. Struble, A. W. Clank, J. T. Coyle and M. R. Delon, Alzheimer’s disease: evidence for selective loss of cholinergic neurones in the nucleus basalis, Ann. Neurol. 10: 122 (1981).PubMedCrossRefGoogle Scholar
  20. 20.
    D. M. Bowen, C. B. Smith, P. White, and A. N. Davison, Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies, Brain 99: 459 (1976).PubMedCrossRefGoogle Scholar
  21. 21.
    P. Davies and A. J. F. Maloney, Selective loss of central cholinergic neurons in Alzheimer’s disease, Lancet ii: 1403 (1976).Google Scholar
  22. 22.
    E. K. Perry, R. H. Perry G. Blessed and B. E. Tomlinson, Necropsy evidence of central cholinergic deficits in senile dementia, Lancet i: 189 (1977).CrossRefGoogle Scholar
  23. 23.
    C. J. Smith, E. K. Perry, R. H. Pery, J. M. Candy, M. Johnson, J. R. Bonham, D. J. Dick, A. Fairbairn, G. Blessed and N. J. Birdsall, Muscarinic cholinergic receptor subtypes in hippocampus in human cognitive disorders, J. Neurochem. 50: 847 (1988).PubMedCrossRefGoogle Scholar
  24. 24.
    M. P. Caulfield, D. W. Straughan, A. J. Cross and T. Crow, Cortical muscarinic receptor subtype and Alzheimer’s disease, Lancet ii: 1277 (1982).Google Scholar
  25. 25.
    D. C. Mash, D. D. Flynn and L.T. Potter, Loss of M2 muscarine receptors in the cerebral cortex in Alzheimer’s disease and experimenatal cholinergic denervation, Science 228: 1115 (1985).PubMedCrossRefGoogle Scholar
  26. 26.
    T. Suzuki, K. Fujimoto, H. Oohata and K. Kawashima, Pre-synaptic M1 muscarinic receptor modulate spontaneous release of acetylcholine from rat basal forebrain slices, Neurosci. Lett. 84: 209 (1988).PubMedCrossRefGoogle Scholar
  27. 27.
    T. G. Ohm, J. Bohl and B. Lemmer, Reduced cAMP-signal transduction in postmortem hippocampus of demented old people, Alzheimer Disease and Associated Disorders 2: 250 (1988).CrossRefGoogle Scholar
  28. 28.
    G. Cole, K. R. Dobkins, L. A. Hansen, R. Terry and T. Saitoh, Decreased levels of protein kinase C in Alzheimer brain, Brain Res. 452: 165 (1988).PubMedCrossRefGoogle Scholar
  29. 29.
    W. D. Boyd, J. Graham-White, G. Blackwood, I. Glen and J. McQueen, Clinical effects of choline in Alzheimer senile dementia, Lancet ii: 711 (1977).CrossRefGoogle Scholar
  30. 30.
    C. M. Smith, M. Swash, A. N. Exton-Smith, M. J. Phillips, P. W. Overstall, M. E. Piper and M. R. Barley, Cholin therapy in Alzheimer’s disease, Lancet ii: 318 (1978).Google Scholar
  31. 31.
    O. Muramoto, M. Sugishita, H. Sugita and Y. Toyokura, Effect of physostigmine on constructional and memory tasks in Alzheimer’s disease, Arch. Neurol. 36: 501 (1979).Google Scholar
  32. 32.
    W. K. Summers, L. V. Majovski, G. M. Marsh, K. Tachiki and A. Kling, Oral tetrahydroaminoacridine in long-term treatment of senile dementia, Alzheimer type, New Engl. J. Med. 315: 1241 (1986).Google Scholar
  33. 33.
    F. J. Pirozzolo, D. S. Baski, A. A. Swihart, and S. H. Appel, Oral tetrahydroaminoacridine in the treatment of senile dementia, Alzheimer type, New Engl. J. Med. 316: 1603 (1987).Google Scholar
  34. 34.
    N. Ogawa, Y. Hirose and M. Nomura, Biochemical and functional aspects of neuropeptides and their receptors in aged-rat brain, in:“Recent Research on Neurotransmitter Receptors”, H. Yoshida, ed., p. 56, Excerpta Medica, Amsterdam (1986).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Norio Ogawa
    • 1
  • Kiminao Mizukawa
    • 2
  • Kumiko Haba
    • 1
  • Kazuo Yoshizawa
    • 3
  • Ichiro Kanazawa
    • 3
  1. 1.Institute for NeurobiologyOkayama University Medical SchoolOkayama 700Japan
  2. 2.Dept. of AnatomyOkayama University Medical SchoolOkayama 700Japan
  3. 3.Dept. of Neurology, Institute of Clinical MedicineUniversity of TsukubaTsukuba 305Japan

Personalised recommendations