Antennae and Noses: Their Sensitivities as Molecule Detectors

  • K.-E Kaissling
Part of the NATO ASI Series book series (NSSA, volume 194)


The sensitivity of noses and antennae depends on behavioral, geometrical, physical, biochemical and physiological factors. They determine the input cross section of the organ, the relative velocity of air current and organ, the rate of adsorption of molecules at the sensory area, the fraction of absorbed molecules exciting sensitive cells, and the minimum number of nerve impulses that must be elicited by a detectable stimulus. The sensitivity to a given odorant is proportional to the capture coefficient, which is the molecule capture rate of a cell related to the stimulus concentration in air. The sensitivity is also proportional to the square root of the number of sensitive receptor cells times the critical stimulus duration divided by the rate of spontaneous impulse firing of a cell. The pheromone receptor cells in the silk moth antenna have a much higher capture coefficient for bombykol compared with cells in the human nose for mercaptane and with cells in the dog nose for α-ionone. The higher capture coefficient compensates for the much smaller number of receptor cells of the moth. For potent odorants stimulus concentrations at the receptor cells as low as 10−14M build up during brief (below 1 s) threshold stimuli in the vertebrate nose.


Receptor Cell Olfactory Epithelium Nerve Impulse Olfactory Mucosa Olfactory Organ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andres, K. H., 1969, Der olfaktorische Saum der Katze, Z. Zellforsch., 96:250–274.PubMedCrossRefGoogle Scholar
  2. Anholt, R. H., 1987, Primary events in olfactory reception, TIBS, 12:58–62.Google Scholar
  3. Demole, E., Enggist, P., Ohloff, G., 1982, 176. 1-p-Menthene-8-thiol: A powerful flavor impact constituent of grapefruit juice (Citrus paradisi Mac Fayden), Helvet. Chirn. Acta, 65:1785–1794.CrossRefGoogle Scholar
  4. Devos, M., van Gemert, L. J., Patte F., Rouault, J. and Laffort, P, Standardized human olfactory thresholds in air, submitted to IRL-Press for publication (1988).Google Scholar
  5. De Kramer, J. J. and Hemberger, J, 1987, Neurobiology of pheromone reception, in: “Pheromone Biochemistry,” G.D. Prestwich, G.J. Blomquist, eds., Clarendon Press, Oxford, 433–472.Google Scholar
  6. De Vries HI. and Stuiver, M., 1960, The Absolute Sensitivity of the Human Sense of Smell, in: “Sensory Communication,” W.A. Rosenblith, ed., Wiley &, Sons, New York, 159–167.Google Scholar
  7. Getchell, T. V., Margolis, F. L. and Getchell, M. L., 1984, Perireceptor and receptor events in vertebrate olfaction, Progr. in Neurobiol., 23:317–345.CrossRefGoogle Scholar
  8. Gower, D. B. and Hancock, M. R., 1982, Investigations into the metabolism and binding of the odorous steroid, 5α-androst-16-en-3-one, in porcine nasal tissues, in: “Olfaction and Endocrine Regulation” W. Breipohl, ed., IRL Press Ltd., London, 267–277.Google Scholar
  9. Györgyi, T. K., Roby-Shemkovitz, A. J. and Lerner, M. R., 1988, Characterization and cDNA cloning of the pheromone-binding protein from the tobacco hornworm, Manduca sexta: A tissues-specific developmentally regulated protein, Proc. Natl. Acad. Sci. USA, 85:9851–9855.PubMedCrossRefGoogle Scholar
  10. Hancock, M. R. and Gower, D. B., 1986, Properties of 3 α-and 3b-hydroxysteroid dehydrogenases of porcine nasal epithelium: some effects of steroid hormones, Biochem. Soc. Transact., 14:1033–1034.Google Scholar
  11. Kaissling, K.-E., 1971, Insect olfaction, in: “Handbook of Sensory Physiology”, Vol.IV, 1, L.M. Beidler, ed., Springer Verlag, Berlin, 351–431.Google Scholar
  12. Kaissling, K.-E., 1987, R. H., “Wright Lectures on Insect Olfaction”, K. Colbow, ed., Simon Fraser University, Burnaby B.C., Canada.Google Scholar
  13. Kaissling, K.-E., Kasang, G., Bestmann, H. J., Stransky, W. and Vostrowsky, O., 1978, A new pheromone of the silkworm moth Bombyx mori, Sensory pathway and behavioral effect, Naturwissenschaften, 65:382–384.CrossRefGoogle Scholar
  14. Kaissling, K.-E., Klein, U., de Kramer, J. J., Keil, T. A., Kanaujia, S. and Hemberger, J., 1985, Insect olfactory cells: Electrophysiological and biochemical studies, in: “Molecular Basis of Nerve Activity,” Proc. Int. Symp. in Memory of D. Nachmansohn; J.-P. Changeux et al., eds., de Gruyter, Berlin/New York, 173–183.Google Scholar
  15. Kaissling, K.-E. and Priesner, E., 1970, Die Riechschwelle des Seidenspinners, Naturwissenschaften, 57:23–28.PubMedCrossRefGoogle Scholar
  16. Kanaujia, S. and Kaissling, K.-E., 1985, Interactions of pheromone with moth antennae: adsorption, desorption and transport, J. Insect Physiol., 31:71–81.CrossRefGoogle Scholar
  17. Kasang, G., 1971, Bombykol reception and metabolism on the antennae of the silkmoth Bombyx mori, in: “Gustation and Olfaction,” G. Ohloff and A. F. Thomas, eds., Academic Press, London/New York, 245–250.Google Scholar
  18. Kasang, G., von Proff, L. and Nicholls, M., 1988, Enzymatic conversion and degradation of sex pheromones in antennae of the male silkworm moth Antheraea polyphemus, Z. Naturforsch., 43c:275–284.Google Scholar
  19. Keil, T., 1982, Contacts of pore tubules and sensory dendrites in antennal chemosensilla of a silkmoth: demonstration of a possible pathway for olfactory molecules, Tissue & Cell, 14:451-462.CrossRefGoogle Scholar
  20. Margolis, F. L. and Getchell, T. V., 1988, “Molecular Neurobiology of the Olfactory System”, Plenum Press, New York and London.CrossRefGoogle Scholar
  21. Menco, B. P., 1980, Qualitative and quantitative freeze-fracture studies on olfactory and nasal respiratory structures of frog, ox, rat, and dog, Cell Tissue Res., 207:183–209.PubMedCrossRefGoogle Scholar
  22. Menco, B. P., 1983, The ultrastructure of olfactory and nasal respiratory epithelium surfaces, in: “Nasal Tumors in Animals and Man”, Vol.1. Anatomy, Physiology, and Epidemiology, G. Reznik, S. F. Stinson, eds., CRC Press, Inc., Boca Raton, F1., 45–102.Google Scholar
  23. Meng, L. Z., Wu, C. H., Wicklein, M., Kaissling, K.-E. and Bestmann, H. J., 1989, Number and sensitivity of three types of pheromone receptor cells in Antheraea pernyi and A. polyphemus, J. comp. Physiol., 165:139–146.CrossRefGoogle Scholar
  24. Moran, D. T., Carter Rowley, III., J., Jafek, B. W. and Lovell, M. A., 1982, The fine structure of the olfactory mucosa in man, J. Neurocytol., 11:721–746.PubMedCrossRefGoogle Scholar
  25. Moulton, D. G., 1977, Minimum odorant concentrations detectable by the dog and their implications for olfactory receptor sensitivity, in: “Chemical Signals in Vertebrates,” D. Müller-Schwarze, M. M. Mozell, eds., Plenum Press, New York, 455–464.Google Scholar
  26. Moulton, D. G., Ashton, E. H. and Eayrs, J. T., 1960, Studies in olfactory acuity, 4. Relative detactability of n-aliphatic acids by the dog, Anim. Behav., 8:117–128.CrossRefGoogle Scholar
  27. Moulton, D. G. and Marshall, D. A., 1976, the performance of dogs in detecting α-ionone in the vapor phase, J. comp. Physiol., 110:287–306.CrossRefGoogle Scholar
  28. Mozell, M. M., Sheehe, P. R., Hornung, D. E., Kent, P. F., Youngentob, S. L. and Murphy, S. J., 1987, “Imposed” and “inherent” mucosal activity patterns, J. Gen. Physiol., 90:625–650.PubMedCrossRefGoogle Scholar
  29. Mozell, M. M., Sheehe, P. R., Swieck, S. W. jun., Kurtz, D. B. and Hornung, D. E., 1984, A parametric study of the stimulation variables affecting the magnitude of the olfactory nerve response, J. Gen. Physiol., 83:233–267.PubMedCrossRefGoogle Scholar
  30. Neuhaus, W., 1953, Über die Riechschärfe des Hundes für Fettsäuren, Z. vergl. Physiol., 35:527–552.Google Scholar
  31. Neuhaus, W., 1957, Über das Verhältnis der Riechschärfe zur Zahl der Riechrezeptoren, Verh. Dtsch. Zool. Ges., 285–292.Google Scholar
  32. Neuhaus, W., 1957, Wahrnehmungsschwelle und Erkennungsschwelle beim Riechen des Hundes im Vergleich zu den Riechwahrnehmungen des Menschen, W. vergl. Physiol., 39:624–633.CrossRefGoogle Scholar
  33. Patte, F., Etcheto, M. and Laffort, P., 1975, Selected and standardized values of suprathreshold odor intensities for 110 substances, in: “ Chemical Senses and Flavor”, E.P. Köster, and H. R. Moskozitw, eds., D. Reidel Publ. Co., Dordrecht-Holland/Boston-USA, 283–305.Google Scholar
  34. Reese, T. S., 1965, Olfactory cilia in the frog, J. Cell. Biol., 25:209–230.PubMedCrossRefGoogle Scholar
  35. Rumbo, E. R. and Kaissling, K.-E., 1989, Temporal resolution of odor pulses by three types of pheromone receptor cells in Antheraea polyphemus, J. Comp. Physiol., 165:281–291.CrossRefGoogle Scholar
  36. Snyder, S. H., Sklar, P. B. Hwang, P. M. and Pevsner, J., 1989, Molecular mechanisms of olfaction, TINS, 12:35–38.PubMedGoogle Scholar
  37. Steinbrecht, R. A., 1970, Zur Morphometrie der Antenne des Seidenspinners, Bombyx mori L.: Zahl und Verteilung der Riechsensillen (Insecta, Lepidoptera), Z. Morph. Tiere, 68:93–126.CrossRefGoogle Scholar
  38. Steinbrecht, R. A. and Kasang, G., 1972, Capture and conveyance of odour molecules in an insect olfactory receptor, in: “Olfaction and Taste IV,” D. Schneider, ed., Wiss. Verlagsges., Stuttgart, 193–199.Google Scholar
  39. Stuiver, M., 1958, “Biophysics of the Sense of Smell”, Thesis, Rijksuniversiteit, Groningen.Google Scholar
  40. Van Drongelen, W., Holley, A., Doving, K. B., 1978a, Convergence in the olfactory system: Quantitative aspects of odour sensitivity, J. Theor. Biol., 71:39–48.CrossRefGoogle Scholar
  41. Van Drongelen, W., 1978b, Unitary recordings of near threshold responses of receptor cells in the olfactory mucosa of the frog, J. Physiol., 277:423–435.Google Scholar
  42. Vogt, R. G., Prestwich, G. D. and Riddiford, L. M., 1988, Sex pheromone receptor proteins, J. Biological Chem., 263:3952–3959.Google Scholar
  43. Vogt, R. G. and Riddiford, L. M., 1981, Pheromone binding and inactivation by moth antennae, Nature, (Lond.), 293:161–163.CrossRefGoogle Scholar
  44. Vogt, R. G., Riddiford, L. M. and Prestwich, G. D., 1985, Kinetic properties of a pheromone degrading enzyme: the sensillar esterase of Antheraea polyphemus, Proc. Nat. Acad. Sci. USA, 82:8827–8831.PubMedCrossRefGoogle Scholar
  45. Zwaardemaker, H., 1914, Geruch und Geschmack, in: “Handbuch der physiologischen Methodik III, 1”, R. Tigerstedt, ed., S. Hirzel, Leipzig, 46–108.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • K.-E Kaissling
    • 1
  1. 1.Max-Planck-Institut für VerhaltensphysiologieSeewiesenFed. Rep. of Germany

Personalised recommendations