• J. F. Ashmore
Part of the NATO ASI Series book series (NSSA, volume 194)


Conversion of mechanical signals into electrical signals is one of the oldest problems faced by living forms. Many simple unicellular organisms possess a mechano-sensing mechanism, which with growing complexity has become elaborated to detect a wide variety of specialized stimuli. This chapter will describe recent work on the biophysics of the interconversion of mechanical and electrical energy in hair cells, the specialized cells of the acoustico-lateralis system of vertebrates. This system includes the cochlea, the organ of hearing; the semicircular canals, the organs concerned with the detection of angular acceleration; the saccule and utricle of the vestibular system, specialized organs concerned with the detection of linear acceleration. In some lower vertebrates,the system also includes the lateral line, the organ concerned with detection of pressure waves in an aquatic environment.


Hair Cell Outer Hair Cell Basilar Membrane Charge Movement Hair Bundle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian, R. H., and Aimers, W., 1976, Charge movement in the membrane of striated muscle, J. Physiol., 254:339–360.PubMedGoogle Scholar
  2. Armstrong, C. M., and Bezanilla, F., 1974, Charge movement associated with the opening and closing of the activation gates of the N a channels, J. Gen. Physiol., 63:533–552.PubMedCrossRefGoogle Scholar
  3. Art, J.J, and Fettiplace, R., 1987, Variation of membrane properties in hair cells isolated from the turtle cochlea, J. Physiol., 358:323–348.Google Scholar
  4. Ashmore, J. F., 1987, A fast motile response in guinea pig outer hair cells: the cellular basis of the cochlear amplifier, J. Physiol., 388:323–347.PubMedGoogle Scholar
  5. Ashmore, J. F., and Meech, R. W., 1986, Ionic basis of membrane potential in guinea pig outer hair cells, Nature, 322:368–371.PubMedCrossRefGoogle Scholar
  6. Ashmore, J. F., 1988, Ionic mechanisms in hair cells of the mammalian cochlea, Prog. Brain Res., 74:3–10.PubMedCrossRefGoogle Scholar
  7. Ashmore, J. F., and Holley, M. C., 1988, The temperature dependence of a fast moltile response in isolated hair cells of the guinea pig cochlea, Q. J. Exp. Physiol., 73:143–145.PubMedGoogle Scholar
  8. Ashmore, J. F., and Russell, I. J., 1983, The physiology of hair cells, pp 149–180, in: “Bioacoustics: a comparative approach”, B. R, Lewis, ed., Academic, London.Google Scholar
  9. Bannister, L. H., Dodson, H. C., Astbury, A. R., and Douek, E. E., 1988, The cortical lattice: a highly ordered system of subsurface filaments in the guinea pig cochlear outer hair cells, Prog. Brain Res., 74:213–219.PubMedCrossRefGoogle Scholar
  10. Bosher, S. K., and Warren, R. L., 1978, Very low calcium content of cochlear endolymph, an extracellular fluid, Nature, 273:377–378.PubMedCrossRefGoogle Scholar
  11. Brehm, P., Kullberg, R., and Moody-Corbett, F., 1984, Properties of non-junctional acetylcholine receptor channels on innervated muscle of Xenopus Laevis, J. Physiol., 350:631–648.PubMedGoogle Scholar
  12. Brownell, W. E., Bader, C. R., Bertrand, D., and De Ribaupierre, Y., 1985, Evoked mechanical responses of isolated cochlear hair cells, Science, 227:194–196.PubMedCrossRefGoogle Scholar
  13. Chandler, W. K., Rakowski, R. F., and Schneider, M. F., 1976, A non-linear voltage-dependent charge movement in frog skeletal muscle, J. Physiol., 254:245–284.PubMedGoogle Scholar
  14. Cooper, K. E., Tang, J. M., Rae, J. L., and Eisenberg, R. S., 1986, A cation channel in frog lens epithelia responsive to pressure and calcium, J. Membr. Biol., 93:259–269.PubMedCrossRefGoogle Scholar
  15. Corey, D. P., and Hudspeth, A. J., 1983, Kinetics of the receptor current in bullfrog saccular hair cells, J. Neurosci., 3:962–976.PubMedGoogle Scholar
  16. Corey, D. P., and Hudspeth, A. J., 1979, Response latency of vertebrate hair cells, Biophys. J., 26:499–506.PubMedCrossRefGoogle Scholar
  17. Crawford, A. C., and Fettiplace, A. C., 1985, The mechanical properties of the ciliary bundles of turtle hair cells, J. Physiol., 364:359–380.PubMedGoogle Scholar
  18. Csukas, S. R., Rosenquist, T. H., and Mulroy, M. J., 1987, Connection between stereocilia in auditory hair cells of the alligator lizard, Hearing. Res., 30:147–156.CrossRefGoogle Scholar
  19. Dallos, P., 1985, Response characteristics of mammalian cochlear hair cells, J. Neurosci., 5:1591–1608.PubMedGoogle Scholar
  20. Dallos, P., Santos-Sacchi, J., and Flock, A., 1982, Intracellular recordings from cochlear outer hair cells, Science, 218:582–584.PubMedCrossRefGoogle Scholar
  21. De Boer, E., 1980, Reflections on reflections, J. Acoust. Soc. Am., 67:882–890.PubMedCrossRefGoogle Scholar
  22. Denk, W., and Webb, W. W., 1989, Simultaneously recording fluctuations in bundle position and of intracellular voltage reveals transduction properties of saccular hair cells, In: “Mechanics of Hearing”, J. P, Wilson, and D. T., Kemp, ed., Plenum, New York.Google Scholar
  23. Diependaal, R. J., Duifhuis, H., Hoogstraaten, H. W., and Viergever, M.A., 1987, Numerical methods for solving one-dimensional cochlear models in the time domain, J. Acoust. Soc. Am., 82:1655–1666.PubMedCrossRefGoogle Scholar
  24. Diependaal, R. J., 1989, Time domain solutions for 1D, 2D and 3D cochlear models, In: “The Mechanics of Hearing”, J. P., Wilson, and D. T., Kemp, ed., Plenum, New York.Google Scholar
  25. Ding, J. -P, Yang, X. -C, Bowman, C. L., and Sachs, F, 1988, A stretch activated ion channel in rat astrocytes in primary cell culture, Soc. Neurosci. Abstr., 14:1056.Google Scholar
  26. Duifhuis, H., Hoogstraten, H. W., van Netten, S., Diependaal, R. J., and Bialek, W., Modelling the cochlea partition with coupled Van der Pol oscillators, pp.290–297, in: “Peripheral auditory mechanisms”, J. B., Allen et al., ed., Lecture Notes in Biomathematics, Vol 64, Springer-Verlag, Berlin.Google Scholar
  27. Edwards, C., Ottoson, D., Rydqvist, B., and Swerup, C., 1981, The permeability of the transducer membrane of the crayfish stretch receptor to calcium and other ions, Neurosci., 6:1455–1460.CrossRefGoogle Scholar
  28. Evans, M. G., and Fuchs, P. A., 1987, Tetrodotoxin-sensitive, voltage-dependent sodium currents in hair cells from the alligator cochlea, Biophys. J., 52:649–652.PubMedCrossRefGoogle Scholar
  29. Fettiplace, R., and Crawford, A. C., 1989, Mechanoelectric transduction in turtle hair cells, In: “Mechanics of Hearing”, J. P., Wilson, and D. T., Kemp, ed., Plenum, New York.Google Scholar
  30. Flock, A, 1983, Hair cells, receptors with a motor capacity, pp.2–9, in “Hearing — physiological bases and psychophysics”, R., Klinke, and R., Hartmann, ed., Springer-Verlag, Berlin.Google Scholar
  31. Flock, A., Flock, B., and Uhlfendahl, M., 1986, Mechanisms of movement in outer hair cells and a possible structural basis, Arch. Otolaryngol., 243:82–90.Google Scholar
  32. Flock, A., and Cheung, H., 1977, Actin filaments in sensory hairs of inner ear receptor cells, J. Cell. Biol., 75:339–343.PubMedCrossRefGoogle Scholar
  33. Forge, A., 1989, The lateral walls of inner and outer hair cells, In: “Mechanics of Hearing”, J. P., Wilson, and D. T., Kemp, ed., Plenum, New York.Google Scholar
  34. Fuchs, P. A., and Mann, A. C., 1986, Voltage oscillations and ionic currents in hair cells isolated from the apex of the chick’s cochlea, J. Physiol., 371:31P.Google Scholar
  35. Guhuray, F., and Sachs, F., 1984, Stretch activated single ion channels in tissue-cultured embryonic chick skeletal muscle, J. Physiol., 352:685–701.Google Scholar
  36. Hess, P., and Tsien, R. W., 1984, Mechanism of ion permeation through calcium channels, Nature, 31:453–455.CrossRefGoogle Scholar
  37. Hodgkin, A. L., MacNaughton, P. A., and Nunn, B. J., 1985, The ionic selectivity and calcium dependence of the light-sensitive pathway in toad rods, J. Physiol., 358:447–468.PubMedGoogle Scholar
  38. Holley, M. C., 1989, Purification of mammalian cochlear hair cells using small volume Percoll density gradients, J. Neurosci. Methods, 27:219–224.PubMedCrossRefGoogle Scholar
  39. Holley, M. C., and Ashmore, J. F., 1988a, On the mechanism of a high frequency force generator in outer hair cells isolated from the guinea pig cochlea, Proc. Roy. Soc. Lond. B., 232:413–429.CrossRefGoogle Scholar
  40. Holley, M. C., and Ashmore, J. F., 1988b, A cytoskeletal spring in cochlear outer hair cells, Nature, 335:635–637.PubMedCrossRefGoogle Scholar
  41. Holton, T., and Hudspeth, A. J., 1986, The transduction channel of hair cells from the bullfrog characterized by noise analysis, J. Physiol., 375:195–227.PubMedGoogle Scholar
  42. Housley, G. D., Norris, C. H., and Guth, P. S., 1988, Single electrode whole cell voltage and current clamp of potassium channels in hair cells isolated from the crista ampullaris of the frog, Soc. Neurosci. Abstr., 14:947.Google Scholar
  43. Howard, J., Roberts, W. M., and Hudspeth, A. J., 1988, Mechanoelectric transduction by hair cells, Ann. Rev. Biophys. Chem, 17:99–124.CrossRefGoogle Scholar
  44. Howard, J., and Ashmore, J. F., 1986, The stiffness of the frog saccular hair bundle, Hearing. Res., 23:93–104.CrossRefGoogle Scholar
  45. Howard, J., and Hudspeth, A. J., 1988, Compliance of the hair bundle associated with gating of the mechanoelectrical transduction channels in the bullfrog’s’s saccular hair cells, Neuron., 1:189–199.PubMedCrossRefGoogle Scholar
  46. Hudspeth, A. J., 1983, Mechanoelectrical transduction by hair cells of the acoustico lateralis sensory system, Annu. Rev. Neurosci., 6:187–215.PubMedCrossRefGoogle Scholar
  47. Khanna, S. M., and Leonard, D., 1982, Basilar membrane tuning in the cat cochlea, Science, 215:305–306.PubMedCrossRefGoogle Scholar
  48. Kim, D. O., 1986, Active and nonlinear cochlear biomechanics and the role of the outer hair cell subsystem in the mammalian auditory system, Hearing. Res., 22:105–114.CrossRefGoogle Scholar
  49. Kolston, P. J., Sharp mechanical tuning in a cochlear model without negative damping, J. Acoust. Soc. Am., 83:1481–1487.Google Scholar
  50. Kostyuk, P. G., Krishtal, O. A., and Pidoplichko, V. I., 1981, Calcium inward current and related charge movements in in the membrane of snail neurones, J. Physiol., 310:402–422.Google Scholar
  51. Lewis, R. S., and Hudspeth, A. J., 1983, Voltage- and ion-gated conductances in solitary vertebrate hair cells, Nature, 304:538–541.PubMedCrossRefGoogle Scholar
  52. Lighthill, J., 1981, Energy flow in the cochlea, J. Fluid. Mech., 106:149–213.CrossRefGoogle Scholar
  53. Lutkohner, B., and Jager, D., 1986, Stability of Active Cochlear Models: “need for a second tuned filter”, Hall, J. L., Hubbard, A., Neely, S. T., and Tubis, A., Springer-Verlag, Berlin.Google Scholar
  54. Miller, C. E., 1985, Structural implications of basilar membrane compliance measurements, J. Acoust. Soc. Am., 77:1465–1474.PubMedCrossRefGoogle Scholar
  55. Mooseker, M. S., 1975, Brush border motility, J. Cell. Biol., 71:417–433.CrossRefGoogle Scholar
  56. Mountain, D. C., 1980, Changes in endolymphatic potential and crossed olivocochlear bundle stimulation alter cochlear mechanics, Science, 210:71–72.PubMedCrossRefGoogle Scholar
  57. Neely, S. T., and Kim, D. O., 1986, A model for active elements in cochlear biomechanics, J. Acoust. Soc. Am., 79:1472–1480.PubMedCrossRefGoogle Scholar
  58. Ohmori, H., 1985, Mechano-electric transduction currents in isolated vestibular hair cells of the chick, J. Physiol., 359:189–217.PubMedGoogle Scholar
  59. Ohmori, H., 1984, Studies of ionic currents in the isolated vestibular hair cells of the chick, J. Physiol., 350:561– 581.PubMedGoogle Scholar
  60. Ohmori, H., 1987, Gating properties of the mechano-electrical transducer channel in dissociated vestibular hair cells of the chick, J. Physiol., 387:589–609.PubMedGoogle Scholar
  61. Ohmori, H., 1988, Mechanical stimulation and Fura-2 fluorescence in the hair bundle of dissociated hair cells of the chick, J. Physiol., 399:115–138.PubMedGoogle Scholar
  62. Peterson, L. C., and Bogert, B. P., 1950, A dynamical theory of the cochlea, J. Acoust. Soc. Am., 22:369–381.CrossRefGoogle Scholar
  63. Roberts, W. M., and Hudspeth, 1987, Spatial distribution of ion channels in hair cells of the bullfrog’s sacculus, Biophys. J., 51:8a.Google Scholar
  64. Robles, L., Ruggero, M. A., and Rich, N. C., 1986, Basilar membrane mechanics at the base of the chinchilla cochlea: I. Input out functions, tuning curves and response phases, J. Acoust. Soc. Am., 80:1364–1374.PubMedCrossRefGoogle Scholar
  65. Russell, I. J., and Sellick, P., 1983, Low frequency characteristics of intracellularly recorded receptor potentials in guinea pig cochlear hair cells, J. Physiol., 388:179–206.Google Scholar
  66. Russell, I. J., Cody, A. R., and Richardson, G. P., 1986, The responses of inner and outer hair cells in the basal turn of the guinea pig cochlea and the mouse cochlea grown in vitro, Hearing. Res., 22:196–216.CrossRefGoogle Scholar
  67. Sakmann, B., Methfessel, C., Mishina, M., Takahashi, T., Takai, T., Kurasaki, M., Fukuda, K., and Numa, S., 1985, Role of acetylcholine receptor subunits in gating of the channel, Nature, 318:538–543.PubMedCrossRefGoogle Scholar
  68. Saito, K., 1983, Fine structure of the sensory epithelium of guinea-pig organ of Corti: subsurface cisternae and lamella bodies in the outer hair cells, Cell. Tiss. Res., 229:467–481.CrossRefGoogle Scholar
  69. Sand, O., 1975, Effects of different ionic environments on the mechanosensitivity of lateral line organs in the mudpuppy, J. Comp. Physiol., 102:27–42.CrossRefGoogle Scholar
  70. Santos-Sacchi, J., and Dilger, J. P., 1988, Whole cell currents and mechanical responses of isolated outer hair cells, Hearing. Res., 35:143–150.CrossRefGoogle Scholar
  71. Sellick, P., Patuzzi, R., and Johnstone, B. M., 1982, Measurement of the basilar membrane motion in the guinea pig using the Mossbauer technique, J. Acoust. Soc. Am., 72:131–141.PubMedCrossRefGoogle Scholar
  72. Shepherd, G. M. G., Barres, B. A., and Corey, D. P., 1988, Bundle blot purification of hair cell stereocilia: electro-phoretic protein mapping, Soc. Neurosci. Abstr., 14:799.Google Scholar
  73. Shotwell, S. L., Jacobs, R., and Hudspeth, A. J., 1981, Directional sensitivity of individual vertebrate hair cells to controlled deflection of their hair bundles, Ann. N.Y. Acad. Sci., 374:1–10.PubMedCrossRefGoogle Scholar
  74. Sigurdson, W. J., and Morris, C. E., 1986, Stretch activation of a K channel in snail heart cells, Biophys. J., 49:163a.Google Scholar
  75. Spoendlin, H., 1978, The afferent innervation of the cochlean, In: “Evoked Electrical Activity in the Auditory Nervous System”, R. F., Naunton, and C., Fernandez, ed., pp. 21–39, Academic Press, New York.Google Scholar
  76. Stommel, E. W., Stephens, R. E., and Alkon, D. L., 1980, Motile statocyst cilia transmit rather than directly transduce mechanical stimuli, J. Cell. Biol., 87:657–662.CrossRefGoogle Scholar
  77. Tasaki, I., and Iwasa, K., 1982, Rapid pressure changes and surface displacements in the squid axon associated with the production of action potentials, Jap. J. Physiol., 32:69–81.CrossRefGoogle Scholar
  78. Tilney, L. G., DeRosier, D. J., and Mulroy, 1980, The organization of actin filaments in the stereocilia of cochlear hair cells, J. Cell. Biol., 86:244–259.PubMedCrossRefGoogle Scholar
  79. Viergever, M. A., Cochlear macromechanics: A review In: “Peripheral Auditory Mechanisms”, J. B., Allen, B., Hall, A., Hubbard, S. T., Neely, and A., Tubis, ed., Springer-Verlag, Berlin.Google Scholar
  80. Von Bekesy, G., 1960, “Experiments in Hearing”, McGraw-Hill: New York.Google Scholar
  81. Weiss, T. F., 1982, Bidirectional transduction in vertebrate hair cells: a mechanism for coupling mechanical and electrical processes, Hearing Res., 7:353–360.CrossRefGoogle Scholar
  82. Wickesberg, R. E., and Geisler, C. D., 1986, Longitudinal stiffness coupling in a 1-dimensional model of the peripheral ear In: “Peripheral Auditory Mechanisms”, J. B., Allen, J. L., Hall, A., Hubbard, S. T., Neely, and A., Tubis, ed., Springer-Verlag, Berlin.Google Scholar
  83. Yang, X. C., Guhuray, F., and Sachs, F., 1986, Mechano- transducing ion channels: ionic selectivity and coupling to viscoelastic components of the cytoskeleton, Biophys. J., 49:373a.CrossRefGoogle Scholar
  84. Yau, K. -W, and Nakatani, K., 1984, Cation selectivity of light sensitive conductance in retinal rods, Nature, Lond., 309:352–354.PubMedCrossRefGoogle Scholar
  85. Zenner, H. P., Zimmermann, U., and Gitter, A. H., 1987, Electrically induced fast motility of isolated mammalian auditory sensory cells, Biochem. Biophys. Res. Comm., 149:304–308.PubMedCrossRefGoogle Scholar
  86. Zwislocki, J., and Kletsky, E. J., 1979, Tectorial membrane, a positive effect on frequency analysis in the cochlea, Science, 204:639–641.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • J. F. Ashmore
    • 1
  1. 1.Department of PhysiologyMedical SchoolBristolUK

Personalised recommendations