Advertisement

Cation Selectivity of the cGMP-Gated Channel of Mammalian Rod Photoreceptors

  • H. Lühring
  • W. Hanke
  • R. Simmoteit
  • U. B. Kaupp
Part of the NATO ASI Series book series (NSSA, volume 194)

Abstract

Biochemical and electrophysiological attempts to elucidate the mechanism of phototransduction in vertebrate rod cells have identified a cation permeant channel in the plasma membrane of rod outer segments being responsible for the inward current in the dark which is directly and reversibly activated by cGMP. The light-induced rapid decrease in inward current and concomitant hyperpolarisation are caused by the closure of these channels due to hydrolysis of the agonist cGMP and subsequent desorption from the channel protein (for reviews see Stryer, 1986; Kaupp and Koch, 1986; Lamb, 1986; Pugh, 1987). To date, most biochemical investigations of the cGMP-gated channel were carried out on bovine rod outer segments, whereas electrical characteristics of the channel were almost exclusively determined on amphibian rod cells (Yau and Baylor, 1989). To fill this gap, we examined the electrical properties of the cGMP-gated channel of bovine rod photoreceptors by employing the patch clamp method. The selectivity of the cation channel for monovalent ions was obtained by exposing excised patches to solutions containing different cation species and determining reversal voltages (V rev ) and macroscopic conductances (g). The dependence of macroscopic current upon cGMP concentration yielded EC50 values.

Keywords

Reversal Voltage cGMP Concentration Macroscopic Current Patch Clamp Method Macroscopic Conductance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fesenko, E. E., Kolesnikov, S. S. and Lyubarsky, A. L., 1985, Nature, 313:310–313.PubMedCrossRefGoogle Scholar
  2. Furman, R. E. and Tanaka, J. C., 1989, Biophys. J., 455a.Google Scholar
  3. Goldman, D. E., 1943, J. Gen. Physiol., 27:37–60.PubMedCrossRefGoogle Scholar
  4. Haynes, L. W., Kay, A. R. and Yau, K.-W., 1986, Nature, 321:66–70.PubMedCrossRefGoogle Scholar
  5. Hodgkin, A. L. and Katz, B., 1949, J. Physiol., London, 108:37–77.PubMedGoogle Scholar
  6. Kaupp, U. B. and Koch, K. -W., 1986, Trends Biochem. Sci., 11:43–47.CrossRefGoogle Scholar
  7. Lamb, T. D., 1986, Trends Neurosci., 9:224–228.CrossRefGoogle Scholar
  8. Menini, A. and Torre, V., 1989, Biophys. J., 55:61a.Google Scholar
  9. Nunn, B., 1987, J. Physiol., London, 394, 17P.Google Scholar
  10. Pugh, E. N. Jr., 1987, Ann. Rev. Physiol., 49:715–741.CrossRefGoogle Scholar
  11. Stern, J. H., Kaupp, U. B. and MacLeish, P. R., 1986, Proc. Natl. Acad. Sci. USA, 83:1163–1167.PubMedCrossRefGoogle Scholar
  12. Stryer, L., 1986, Ann. Rev. Neurosci., 9:87–119.PubMedCrossRefGoogle Scholar
  13. Yau, K. -W. and Baylor, D., 1989, Ann. Rev. Neurosci., 12:289–327.PubMedCrossRefGoogle Scholar
  14. Yau, K. -W., Haynes, L. W. and Nakatani, K., 1986, In: “Membrane control of cellular activity,” Lüttgau, ed., A.C., Gustav Fischer, Stuttgart, pp. 343–366.Google Scholar
  15. Zimmerman, A. L. and Baylor, D. A., 1986, Nature, 321:70–72.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • H. Lühring
    • 1
  • W. Hanke
    • 1
  • R. Simmoteit
    • 1
  • U. B. Kaupp
    • 1
  1. 1.Institut für Biologische InformationsverarbeitungKernforschungsanlageJülichGermany

Personalised recommendations