Quantum Physics and Gravitation

  • Rudolf Haag
Part of the NATO ASI Series book series (NSSB, volume 234)


The subject matter of my lectures is not closely related to the main topic of this school: constructive quantum field theory and, if anyone expects from the title that I shall talk about superstrings I have to disappoint him right away. I share with many the expectation that after 60 years of continuous development we stand on the verge of a revolutionary change of the basic concepts of physical theory, that — in the terminology of Kuhn — a new paradigm will be created, a change as radical as the transition from classical to quantum physics. I believe that an essential component in this transition will involve a synthesis between ideas of general relativity and quantum physics. Whether superstrings will be the vehicle to achieve this seems to me at this stage less obvious, though I am quite ready to believe that some of the mathematical structures encountered in the study of superstrings may provide important clues. Nonetheless we should not underrate the importance of a critical understanding of the principles and recipes of today’s (or yesterday’s) paradigms. Where do they clash? What is the strength of their support? How natural are they? In short, I want to emphasize the role of natural philosophy and, since this is a summer school, I think it is legitimate to spend some time reviewing well known things to form a picture.


Black Hole Minkowski Space Jordan Algebra Local Algebra Outgoing Radiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Jordan, J. v.Neumann and E.P. Wigner, On an algebraic generalization of the quantum mechanical formalism, Ann. of Math. 35: 29–64 (1934)MathSciNetCrossRefGoogle Scholar
  2. G. Birkhoff and J. v.Neumann, The logic of quantum mechanics, Ann. of Math. 37: 823–843 (1936)MathSciNetCrossRefGoogle Scholar
  3. D. Finkelstein, J.M. Jauch, S. Schiminovich, and D. Speiser, Foundations of quaternion quantum mechanics, J. Math. Phys. 3: 207–220 (1962).MathSciNetADSCrossRefGoogle Scholar
  4. 2.
    G. Ludwig, Versuch einer axiomat. Grundlegung der Quantenmechanik und allgemeinerer physikal Theorien, Z. Phys. 181: 233–260 (1964)MathSciNetADSMATHCrossRefGoogle Scholar
  5. G. Ludwig, Attempt of an axiomat. foundation… II, Commun. Math. Phys. 4: 331–348 (1967)MathSciNetADSMATHCrossRefGoogle Scholar
  6. C. Piron, Axiomatique quantique, Hely. Phys. ACta 37: 439–468 (1964).MathSciNetMATHGoogle Scholar
  7. 3.
    J.C.T. Pool, Baer-semigroups and the logic of quantum mechanics, Commun. Math. Phys. 9: 118–141 (1968).MathSciNetADSMATHCrossRefGoogle Scholar
  8. 4.
    B. Mielnik, Generalized quantum mechanics, Commun. Math. Phys. 37: 221–256 (1974).MathSciNetADSCrossRefGoogle Scholar
  9. 5.
    H. Araki, On a characterization of the state space of quantum mechanics, Commun. Math. Phys. 75: 1–24 (1980)MathSciNetADSMATHCrossRefGoogle Scholar
  10. E.M. Alfsen and F.W. Shultz, State spaces of Jordan algebras, Acta Math. 140: 155–190 (1978).MathSciNetMATHCrossRefGoogle Scholar
  11. 6.
    J. Bellissard and B. Iochum, Homogeneous self-dual cones versus Jordan algebras, Ann. Inst. Fourier Grenoble 28: 27–67 (1978)MathSciNetMATHCrossRefGoogle Scholar
  12. B. Iochum, Cones autopolaires at algebras de Jordan, Lecture Notes in Mathematics, Springer Berlin Heidelberg, NY (1984).Google Scholar
  13. 7.
    K. Fredenhagen. On the modular structure of local algebras of observables, Corn-Mun. Math. Phys. 97: 79–89 ( 1985)Google Scholar
  14. 8.
    R. Haag and D. Kastler. An algebraic approach to quantum field theory, J. Math. Phys. 5: 848 (1964).MathSciNetADSMATHCrossRefGoogle Scholar
  15. 9.
    R. Haag, R.V. Kadison and D. Kastler, Nets of C’-algebras and classification of states, Commun. Math. Phys. 16: 81–104 (1970).MathSciNetADSMATHCrossRefGoogle Scholar
  16. 10.
    D. Buchholz and E.H. Wichmann, Causal independence and the energy level density of states in local quantum field theory, Commun. Math. Phys. 106: 321–344(1986).Google Scholar
  17. 11.
    R. Haag and J.A. Swieca. When does a quantum field theory describe particles?, Commun. Math. Phys. 1: 308–320 (1965).MathSciNetADSMATHCrossRefGoogle Scholar
  18. 12.
    H. Araki and R. Haag, Collision cross sections in terms of local observables, Commun. Math. Phys. 4: 77–91 (1967).MathSciNetADSCrossRefGoogle Scholar
  19. 13.
    D. Buchholz, Particles, infraparticles and the problem of asymptotic completeness, in Proc. of VIIP h Intern. Congress of Mathematical Physics, Marseille 1986. World Scientific, Singapore (1987).Google Scholar
  20. 14.
    S. Doplicher, R. Haag and J.E. Roberts, Fields, observables and gauge transformations II, Commun. Math. Phys. 15: 173–200 (1969)MathSciNetADSMATHCrossRefGoogle Scholar
  21. S. Doplicher, R. Haag and J.E. Roberts, Local observables and particle statistics I and II, Commun. Math. Phys. 23: 199–230 (1971); 35: 49–85 (1974).Google Scholar
  22. 15.
    D. Buchholz and K. Fredenhagen, Locality and the structure of particle states, Commun. Math. Phys. 84: 1–54 (1982).MathSciNetADSMATHCrossRefGoogle Scholar
  23. 16.
    K. Fredenhagen, On the existence of antiparticles, Commun. Math. Phys. 79: 141–151 (1981).MathSciNetADSCrossRefGoogle Scholar
  24. 17.
    D. Buchholz and H. Epstein, Spin and statistics of quantum topological charges, Fysica 17: 329–343 (1985).Google Scholar
  25. 18.
    S.W. Hawking and G.F.R. Ellis, The large scale structure of space-time, Cambridge University Press 1980.Google Scholar
  26. 19.
    J.D. Bekenstein, Black holes and entropy, Phys. Rev. D7: 2333–2346 (1973).Google Scholar
  27. 20.
    S.W. Hawking, Particle creation by black holes, Commun. Math. Phys.43: 199–220 (1975).Google Scholar
  28. 21.
    B.S. Kay and R.M. Wald, Some recent developments related to the Hawking effect, in Proc. XV th Intern. Conf. on Differential Geom. Methods in Theoret. Phys., Clausthal 1986, ed. by H.D. Doebner and J.D. Henning, World Scientific, Singapore 1987.Google Scholar
  29. 22.
    R. Haag, H. Narnhofer and U. Stein, On quantum field theory in gravitational background, Commun. Math. Phys. 94: 219–238 (1984).MathSciNetADSCrossRefGoogle Scholar
  30. 23.
    K. Fredenhagen and R. Haag, On the derivation of Hawking radiation associated with the formation of a black hole, to be published in Commun. Math. Phys. Google Scholar
  31. 24.
    J. Dimock and B.S. Kay, Classical and quantum scattering theory for linear scalar fields on the Schwarzschild metric, Ann. Phys. (NY) 175: 366–426 (1987).MathSciNetADSMATHCrossRefGoogle Scholar
  32. 25.
    J.J. Bisognano and E.H. Wichmann, On the duality condition for a Hermitean scalar field, J. Math. Phys. 17: 303 (1976).MathSciNetADSCrossRefGoogle Scholar
  33. 26.
    W.G. Unruh, Notes on black hole evaporation, Phys. Rev. D14: 870–891 (1976).Google Scholar
  34. 27.
    S. Adler, J. Liebermann and Y.J. Ng, Regularization of the stress-energy tensor for vector and scalar particles propagating in a general background metric, Ann. Phys. (NY) 106: 279–321 (1977).ADSCrossRefGoogle Scholar
  35. 28.
    R.M. Wald, The back reaction effect in particle creation in curved space-time. Commun. Math. Phys. 54: 1–19 (1977): Phys. Rev. D17: 1477 (1978).Google Scholar
  36. 29.
    P.C.W. Davies and S.A. Fulling, Quantum vacuum energy in two-dimensional space-times, Proc. Roy. Soc. (London) A354: 59–77 (1977).Google Scholar
  37. 30.
    P. Candelas, Vacuum polarization in Schwarzschild space-time, Phys. Rev. D21: 2185–2202 (1980).Google Scholar
  38. 31.
    S.A. Fulling, M. Sweeney and R.M. Wald, Singularity structure of the two-point function in quantum field theory in curved space-time, Commun. Math. Phys. 63: 257–264 (1981).ADSCrossRefGoogle Scholar
  39. 32.
    M.R. Brown and A.C. Ottewill, The energy-momentum operator in curved space-time, Proc. Roy. Soc. (London) 889A: 379–403 (1983).MathSciNetADSGoogle Scholar
  40. 33.
    N.D. Birrell and P.C.W Davies, Quantum fields in curved space, Cambridge University Press 1982.Google Scholar
  41. 34.
    R.M. Wald, General relativity, Chicago University Press 1984.Google Scholar
  42. 35.
    K. Fredenhagen and R. Haag, Generally covariant quantum field theory and scaling limits, Commun. Math. Phys. 108: 91–115 (1987).MathSciNetADSMATHCrossRefGoogle Scholar
  43. 36.
    R. Haag, in Quantum fields and geometry, ed. by M. Cahen and M. Flato, Kluwer Acad. Publishers, Dordrecht, Boston, London 1988.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Rudolf Haag
    • 1
  1. 1.II. Inst. f. Theoret. Phys.Univ. HamburgGermany

Personalised recommendations