Wess-Zumino-Witten Conformal Field Theory

  • Krzysztof Gawędzki
Part of the NATO ASI Series book series (NSSB, volume 234)


These lectures are designed as a possible introduction to conformal field theory (CFT), a subject which has been developing fast in recent years, stimulated by its applications to critical phenomena in two dimensions and to string theory. For the sake of concreteness, we shall concentrate on a specific case of the theory: the Wess-Zumino-Witten (WZW) models of two-dimensional quantum field theory. These are the conformal invariant versions of the sigma models with fields taking values in a compact Lie group G. The plan of the course is as follows:
  1. 1.

    Axioms of CFT

  2. 2.
    WZW models
    1. A.

      Kac-Moody symmetries

    2. B.


    3. C.

      Green functions

    4. D.

      Fusion rules

  3. 3.

    Vertex operator representation

  4. 4.
    Coset construction
    1. A.


    2. B.

      Unitary series.



Partition Function Riemann Surface Green Function Conformal Field Theory Fusion Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. FRÖHLICH: Contribution to this volumeGoogle Scholar
  2. [2]
    G. SEGAL - The definitions of conformal field theory, in Links Between Geometry and Mathematical Physics, pp. 13–17, MPI/87–58 preprint and the talk at the International Congress of Mathematical Physics, Swansea 1988Google Scholar
  3. [3]
    C. VAFA - Operator formalism on Riemann surface, Phys. Lett. B 190, 47–54 (1987), Conformal theories and punctured surfaces, Phys. Lett. B 199, 195–202 (1987), Conformal algebra of Riemann surfaces, HUTP-88/A053 preprint, L. ALVAREZ-GAUMÉ, C. GOMEZ, G. MOORE, C. VAFA Strings in the operator formalism, Nucl. Phys. B 303, 455–521 (1988)Google Scholar
  4. [4]
    E. WITTEN - Non-abelian bosonization in two-dimensions, Commun. Math. Phys. 92, 455–477 (1984)MathSciNetADSMATHCrossRefGoogle Scholar
  5. [5]
    D. GEPNER, E. WITTEN - String theory on group manifolds, Nucl. Phys. B 278, 493549 (1986)MathSciNetGoogle Scholar
  6. [6]
    V. KNIZHNIK, A. B. ZAMOLODCHIKOV - Current algebra and Wess-Zumino model in two dimensions, Nucl. Phys. B 247, 83–103 (1984)MathSciNetADSMATHCrossRefGoogle Scholar
  7. [7]
    G. FELDER, K. GAWDDZKI, A. KUPIAINEN - Spectra of Wess-Zumino-Witten models with arbitrary simple groups, Commun. Math. Phys. 117, 127–158 (1988)ADSMATHCrossRefGoogle Scholar
  8. [8]
    A. M. POLYAKOV - Interaction of Goldstone particles in two dimensions. Application to ferromagnets and massive Yang-Mills fields, Phys. Lett. B 59, 79–81 (1975)MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    A. M. POLYAKOV, P. B. WIEGMANN - Goldstone fields in two dimensions with multivalued actions, Phys. Lett. B 141, 223–228 (1984)MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    A. PRESSLEY, G. SEGAL - Loop Groups, Clarendon Press, Oxford 1986MATHGoogle Scholar
  11. [11]
    V. G. KAC - Infinite Dimensional Lie Algebras, Cambridge University Press, Cambridge 1985MATHGoogle Scholar
  12. [12]
    R. GOODMAN, N. R. WALLACH - Structure and unitary cocycle representations of loop groups and the group of diffeomorphisms of the circle, J. Reine Angew. Math. 347, 69–133 (1984)MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    H. SUGAWARA - A field theory of currents, Phys. Rev. 170, 1659–1662 (1968)ADSCrossRefGoogle Scholar
  14. I. B. FRENKEL - Two constructions of affine Lie algebra representations and Boson Fermion correspondence in quantum field theory, J. Func. Anal. 44, 259–327 (1981)MathSciNetMATHCrossRefGoogle Scholar
  15. [14]
    V. G. KAC - Infinite-dimensional Lie algebras and Dedekind’s ‘q-function, Func. Anal. Appl. 8, 68–70 (1974)MATHCrossRefGoogle Scholar
  16. [15]
    P. CHRISTE, R. FLUME - The four-point correlations of all primary operators of the d=2 conformal invariant SU(2) o-model with Wess-Zumino term, Nucl. Phys. B 282, 466–494 (1987)Google Scholar
  17. [16]
    A. B. ZAMOLODCHIKOV, V. A. FATEEV - Operator algebra and correlation functions of the two-dimensional Wess-Zumino SU(2)xSU(2) chiral model, Yad. Fiz. 43, 1031–1044 (1986)Google Scholar
  18. [17]
    A. A. BELAVIN, A. M. POLYAKOV, A. B. ZAMOLODCHIKOV - Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B 241, 333–380 (1984)MathSciNetADSMATHCrossRefGoogle Scholar
  19. [18]
    and LBL25316 (1988) preprints, G. FELDER, R. SILVOTTI - Modular covariance of minimal model correlation functions, to appear in Commun. Math. Phys.Google Scholar
  20. [19]
    E. WITTEN - Quantum field theory and Jones polynomial,IASSNS-HEP-88/33 preprintGoogle Scholar
  21. [20]
    G. FELDER, K. GAWVDZKI, A. KUPIAINEN: The spectrum of Wess-Zumino-Witten models, Nucl. Phys. B 299, 355–366 (1988)ADSCrossRefGoogle Scholar
  22. [21]
    M. F. ATIYAH, R. BOTT - The Yang-Mills equations over Riemann surfaces, Phil. Trans. R. Soc. Lond. A 308, 523–615 (1982)Google Scholar
  23. M. S. NARASIMHAN, C. S. SHESHADRI - Stable and unitary vector bundles on a compact Riemann surface, Ann. Math. 82, 540–567 (1965).MATHCrossRefGoogle Scholar
  24. S. K. DONALDSON - A new proof of a theorem of Narasimhan and Seshadri, J. Diff. Geom. 18, 269–277 (1983) and Infinite determinants, stable bundles and curvature, Duke Math. J. 54, 231–247 (1987)Google Scholar
  25. [22]
    N. HITCHIN: Private communicationGoogle Scholar
  26. [23]
    D. BERNARD, G. FELDER: Private communicationGoogle Scholar
  27. [24]
    K. GAWUDZKI - Conformal field theory, IHES/P/88/56 preprint, to appear in AstérisqueGoogle Scholar
  28. [25]
    D. B. RAY, I. M. SINGER - Analytic torsion for complex manifolds, Ann. Math. 98, 154–177 (1973)MathSciNetMATHCrossRefGoogle Scholar
  29. [26]
    D. QUILLEN - Determinants of Cauchy-Riemann operators over Riemann surface, Func. Anal. Appl. 19, 31–34 (1985)MathSciNetMATHCrossRefGoogle Scholar
  30. [27]
    I. B. FRENKEL, V. G. KAC - Basic representations of affine Lie algebras and dual resonance models, Inv. Math. 62, 23–66 (1980)Google Scholar
  31. G. SEGAL - Unitary representations of some infinite dimensional groups, Commun. Math. Phys. 80, 301–342 (1981)ADSMATHCrossRefGoogle Scholar
  32. [28]
    H. TSUKADA - String path integral realization of vertex operator algebras, University of California in San Diego thesis 1988Google Scholar
  33. [29]
    V. G. KAC - An elucidation of “Infinite dimensional algebras… and the very strange formula”. Es l) and the cube root of the modular invariant j, Advances in Math. 35, 264–273 (1980)Google Scholar
  34. [30]
    A. B. ZAMOLODCHIKOV, V. A. FATEEV - Non-local (parafermion) currents in two-dimensional conformal quantum field theory and self-dual critical points of ZN—symmetric statistical systems,Zh. Eksp. Teor. Fiz. 89, 380–399 (1985)Google Scholar
  35. D. GEPNER, Z. QIU - Modular invariant partition functions for parafermionic field theories, Nucl. Phys. B 285 [FS 19], 423–453 (1987)MathSciNetADSCrossRefGoogle Scholar
  36. [31]
    K. GAWF,,DZKI, A. KUPIAINEN - Coset construction from functional integrals,IHES/P/88/45 preprint, to appear in Nucl. Phys. BGoogle Scholar
  37. [32]
    A. M. POLYAKOV, P. B. WIEGMANN - Theory of non-abelian Goldstone bosons in two dimensions, Phys. Lett. B 131, 121–126 (1983)MathSciNetADSCrossRefGoogle Scholar
  38. [33]
    P. GODDARD. A. KENT, D. OLIVE - Unitary representations of the Virasoro and super-Virasoro algebras, Commun. Math. Phys. 103, 105–119 (1986)MathSciNetADSMATHCrossRefGoogle Scholar
  39. [34]
    D. FRIEDAN, Z. QIU, S. SENKER - Details of the non-unitarity proof for heighest weight representations of the Virasoro algebra, Commun. Math. Phys. 107, 535–542 (1986)ADSMATHCrossRefGoogle Scholar
  40. [35]
    A. CAPPELLI, C. ITZYKSON, J.-B. ZUBER - The A-D-E classification of minimal and A(11) conformal invariant theories, Commun. Math. Phys. 113, 1–26 (1987)Google Scholar
  41. [36]
    A. B. ZAMOLODCHIKOV - Conformal symmetry and multicritical points in two-dimensional quantum field theory, Yad. Fiz. 44, 821–827 (1986)MathSciNetGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Krzysztof Gawędzki
    • 1
  1. 1.C.N.R.S., I.H.E.S.Bures-sur-YvetteFrance

Personalised recommendations