An Overview of Ubiquinone Proteins

  • Tsoo E. King


Ubiquinone (coenzyme Q) may serve as a respiratory carrier only when it is bound to a protein. Q may be considered as a prosthetic group, i. e. coenzyme, which can freely dissociate and associate with protein. So far three classes of Q-proteins have been found. QP-S is the immediate electron acceptor of succinate dehydrogenase (SDH). The reconstitution of succinate-ubiquinone reductase needs only SDH and QP-S independent of any cytochrome. QP-S has been isolated to pure form but its high hydrophobic nature prevents the complete determination by chemical means of primary structure.

QP-C acts in the cytochromes b and c1 region, has been purified and amino acid sequence determined. We do not know whether there is second QP-C to fulfil Qo and Qi theory. QP-N exists in the NADH-ubiquinone reductase segment which is free from SDH and cytochrome oxidase and nearly free (<0.06 nmol per mg protein) of cytochromes b and c1. The protein moiety of Q-protein not only stabilizes the ubisemiquinone but also dictates the site or sites where the QP acts on the respiratory chain.


Respiratory Chain Microwave Power Succinate Dehydrogenase Cytochrome B560 Sodium Dodecyl Sulfate Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cain, J. C., and Morton, R.A. (1955) Biochem. J., 60, 274–283PubMedGoogle Scholar
  2. 1a.
    Morton, R.A., Wilson, G.M., Lowe, J. S., and Leat, W.M.F. (1958) Biochem, J. 68, 16pGoogle Scholar
  3. 2.
    Morton, R.A., Wilson, G.M. Lowe, J.S., and Leat, W.M.F. (1957) Chem. and Ind., 1649Google Scholar
  4. 3.
    Pumphrey, A.M., Redfearn, E.R. and Morton, R.A. (1958) J. Biochem. 70, 1P.Google Scholar
  5. 4.
    King, T.E. (1980) in Ozawa et al. Eds New Frontier of Biochemistry p. 121–134.Google Scholar
  6. 5.
    Hatefi, Y., Lester, R. and Ramosarmae, T. (1958) 17, 607 (Abstract no. 607)Google Scholar
  7. 6.
    Takemori, S and King, T.E. (1964). J Biol. Chem, 239, 3546–3558PubMedGoogle Scholar
  8. 7.
    King, T.E., and Takemori, S. (1964) J. Biol. Chem. 239, 3559–3569.PubMedGoogle Scholar
  9. 8.
    King, T.E. (1982) In Function of Quinones in Energy Conserving Systems (B.L. Trumpower, ed.) Academic Press, New York, pp. 3–25.Google Scholar
  10. 9.
    Yu, C.A. Yu, L., and King, T.E. (1977) 78, 259–265; Yu, C. A., Yu, L., and King, T.E. (1979) Fed. Proc. 38, 638.Google Scholar
  11. 10.
    Nagaoka, S., Yu, L., and King, T.E. (1981) Arch. Biochem. Biophys. 208, 334–343PubMedCrossRefGoogle Scholar
  12. 11.
    Yu, C.A. and Yu, L. (1980) Biochemistry 19, 3579–3585PubMedCrossRefGoogle Scholar
  13. 12.
    Ackrell, B. A. C., Ball, M. B., and Kearney, E. B. (1980) J. Biol. Chem. 255, 2761–2769PubMedGoogle Scholar
  14. 13.
    Vingradov, A.D., Gavrikov, V.G. and Gavrikova, E.O. (1980) Biochim. Biophys. Acta, 592, 13–27CrossRefGoogle Scholar
  15. 14.
    Galante, Y.M. and Hatefi, Y. (1980) J. Biol Chem., 255, 5530–5537PubMedGoogle Scholar
  16. 14a.
    Yu, L., Xu, J. X., Haley, P., and Yu, C. A. (1987) J. Biol. Chem. 262, 1137–1143PubMedGoogle Scholar
  17. 15.
    Xu, Y., Salerno, J. C., Wei, Y. H., and King, T. E. (1987) Biochem. Biophys. Res. Commun. 144, 315–322PubMedCrossRefGoogle Scholar
  18. 16.
    Tanford, C. (1980). The Hydrophobic Effect 2nd Ed., John Wiley, New York, NYGoogle Scholar
  19. 17.
    Steinhart, J., and Reynolds, J. A. (1960). Multiple Equilibria in Protein, Academic Press, New YorkGoogle Scholar
  20. 18.
    King, T.E. and Xu, Y. (1988) in Cytochrome Systems (S. Papa, et al. eds) pp. 503–508, Plenum Press, New YorkGoogle Scholar
  21. 19.
    Yu, C. A., Nagaoka, S., Yu, L., and King, T.E. (1980) Arch. Biochem. 204, 59–70PubMedCrossRefGoogle Scholar
  22. 20.
    Wang, T. Y., and King, T. E. (1982) Biochem. Biophys. Res. Commun. 104, 591–596PubMedCrossRefGoogle Scholar
  23. 21.
    Wakabayashi, S., Takao, T., Shimonishi, Y., Kuramitsu, S., Matsubara, H., Wang, T. Y., Zhang, Z. P., and King, T. E. (1985) J. Biol. Chem. 260, 337–343PubMedGoogle Scholar
  24. 22.
    Yoshida, S., Zhang, Z. P., and King, T. E. (1982) Biochem. Intl. 4, 1–8Google Scholar
  25. 23.
    Suzuki, H., and King, T. E.(1983). J. Biol. Chem. 258, 352–358PubMedGoogle Scholar
  26. 24.
    Hatefi, Y., and Haavik, A.G. and Griffiths, D.E. (1962) J. Biol. Chem. 237, 1676–1680PubMedGoogle Scholar
  27. 25.
    Salerno, J. C., Lim, J., King, T.E. Blum, H., and Ohnishi, T. (1979) J. Biol. Chem. 4828–4835Google Scholar
  28. 26.
    Mitchell, P. (1975) FEBS Lett. 56, 1–6PubMedCrossRefGoogle Scholar
  29. 27.
    Green, D.E. (1959), Discussion of Faraday Soc. 27 206–216CrossRefGoogle Scholar
  30. 28.
    Bowyer, J. R. and Trumpower, B. L. (1981) in Chemosmotic Proton Circuits in Biological Membranes (V.P. Shubacher and P.C. Hickel eds) pp. 105–122, Addison-Wesley, Reading, Mass.Google Scholar
  31. 29.
    Zhn, Q. S., Berden, J. A., DeVries, S., and Slater, E. C. (1982) Biochem. Biophys. Acta 680, 67–79Google Scholar
  32. 30.
    von Jagow, G., and Link, T. A. (1986) Methods Enzymol, 126, 253–271CrossRefGoogle Scholar
  33. 31.
    Mitchell, P. (1987) in Advances in Membrane Biochemistry and Bioenergetics, C.H. Kim et al. eds) pp 13–52, Plenum Press, New York, NYGoogle Scholar
  34. 32.
    Kroger, A., and Klingenberg, M. (1973) Eur. J. Biochem. 34, 358–368PubMedCrossRefGoogle Scholar
  35. 33.
    Kroger, A., and Klingenberg, M. (1973) Eur. J. Biochem. 39, 313–323PubMedCrossRefGoogle Scholar
  36. 34.
    Wikstrom, M. and Berden, J. (1972), Biochim. Biophys. Acta 283, 403–420PubMedCrossRefGoogle Scholar
  37. 35.
    Rich, P. R. (1982) in Functions of Quinone in Energy Conversion System (B. Trumpower ed) pp. 73–83, Academic Press, New YorkGoogle Scholar
  38. 36.
    Greville, G. D. (1969) in Current Topics in Bioenergetics (Sanadi, D.R. ed) pp. 1–156, Academic Press, New YorkGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Tsoo E. King
    • 1
    • 2
  1. 1.Institute of Structural & Functional StudiesUniversity City Science CenterPhiladelphiaUSA
  2. 2.Department of Biochemistry & BiophysicsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations