Bioenergetics pp 429-439 | Cite as

Mitochondrial Myopathies: Morphological Approach to Molecular Abnormalities

  • Takeshi Sato
  • Shinji Nakamura
  • Hiroko Hirawake
  • Etsuko Uchida
  • Yasunori Ishigaki
  • Koichi Seki
  • Ryo Kobayashi
  • Satoshi Horai
  • Takayuki Ozawa


Cytochrome c oxidase (CCO) activity was shown by biochemical and histochemical examination to be decreased in the skeletal muscles of twelve patients with mitochondrial myopathies, especially in 8 chronic progresssive external ophthalmoplegia (CPEO) cases, which included 2 Kearns-Sayre syndrome and 6 ocular myopathy patients. In 4 MELAS patients, NADH cytochrome c reductase activity was decreased. Immunocytochemical examination, using anti-CCO, anti-complex I and III rabbit sera revealed that CCO was stained more weakly in the muscle fibers of one of the CPEO patients than in those of the control.

Immuno-electron microscopic examination of CCO, complex I and III, using a method of gold labeling, was also performed. Extensive labeling by gold particles, representing the localization of respiratory enzymes, could be seen in close vicinity to the cristae and inner mitochondrial membrane of normal shaped mitochondria. The concentration of gold particles was markedly decreased in one of the CPEO patients.

To detect the localization of mitochondrial DNA or mRNA, in situ hybridization was performed on human biopsied muscles using a 35S labeled mitochondrial DNA probe. The wide distribution of autoradiographic grains for mRNA over the sarcoplasm of all muscle fibers was correlated with the distribution of immuno-stained mitochondria.

Southern blotting revealed large deletions of mitochondrial DNA in six of the patients with CPEO. In one of these patients, in situ hybridization showed a marked decrease in density of autoradiographic grains in muscle fibers.


Gold Particle Mitochondrial Myopathy Chronic Progressive External Ophthalmoplegia Myoclonus Epilepsy Biopsy Muscle Specimen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Shapira, S. Harel and A. Russell, Mitochondrial encephalopathy: a group of neuromuscular disorders with defects in oxidative metabolism, Isr J Med Sci 13: 161 (1977).PubMedGoogle Scholar
  2. 2.
    J. A. Morgan-Hughes, D. J. Hayes, J. B. Clark et al., Mitochondrial encephalomyopathies biochemical studies in two cases revealing defects in the respiratory chain, Brain 105:553 (1982).PubMedCrossRefGoogle Scholar
  3. 3.
    S. DiMauro, E. Bonilla, M. Zeviani et al., Mitochondrial myopathies, Ann Neurol 17: 521 (1985).PubMedCrossRefGoogle Scholar
  4. 4.
    D. A. Drachman, Ophthalmoplegia plus, the neurodegenerative disorders associated with progressive external ophthalmoplegia, Arch Neurol 18: 654 (1968).PubMedCrossRefGoogle Scholar
  5. 5.
    S. G. Pavlakis, P. C. Phillips, S. DiMauro et al., Mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS): a distinctive clinical syndrome, Ann Neurol 16: 481 (1984).PubMedCrossRefGoogle Scholar
  6. 6.
    N. Fukuhara, Myoclonus epilepsy and mitochondrial myopathy, in: “Mitochondrial Pathology in Muscle Diseases,” G. Scarlato & C. Cerri eds., Piccin Medical Books, Padova (1983), pp88.Google Scholar
  7. 7.
    S. Takeda, K. Wakabayashi, E. Ohama et al., Neuropathology of myoclonus epilepsy associated ragged-red fiber, Acta Neuropathol 75: 433 (1988).PubMedCrossRefGoogle Scholar
  8. 8.
    I. J. Holt, A. E. Harding and J. A. Morgan-Hughes, Deletions of mitochondrial DNA in patients with mitochondrial myopathies, Nature 331: 717 (1988).PubMedCrossRefGoogle Scholar
  9. 9.
    M. Zeviani, C. T. Moraes, S. DiMauro et al., Deletions of mitochondrial DNA in Kearns-Sayre syndrome, Neurology 38: 1339 (1988).PubMedGoogle Scholar
  10. 10.
    C. T. Moraes, S. DiMauro, M. Zeviani et al., Mitochondrial DNA deletions in progressive external ophthalmoplegia and Kearns-Sayre syndrome, N Eng J Med 320: 1293 (1989).CrossRefGoogle Scholar
  11. 11.
    M. W. Makinen and C. Lee, Biochemical studies of skeletal muscle mitochondria. 1. Microanalysis of cytochrome content, oxidative and phoshorylative activities of mammalian skeletal muscle mitochondria, Arch Biochem Biophys 126: 75 (1968).PubMedCrossRefGoogle Scholar
  12. 12.
    Y. Hatefi and J. S. Rieske, The preparation and properties of DPNH-cytochrome c reductase (complex I–III of the respiratory chain), Methods Enzymol 10: 225 (1967).CrossRefGoogle Scholar
  13. 13.
    T. E. King, Preparation of succinate-cytochrome c reductase, Methods Enzymol 10: 216 (1967).CrossRefGoogle Scholar
  14. 14.
    I. Sekuzu, Y. Orii and K. Ohnishi, Purification and assay of cytochromes, Protein, nucleic acid, enzyme (Tokyo) 10: 1610 (1965).Google Scholar
  15. 15.
    A. M. Seligman, M. J. Karnovsky, H. L. Wasserkrug et al., Non-droplet ultrastructural demonstartion of cytochrome oxidase activity with a polymerising osmiophilic reagent, diaminobenzidine, J Cell Biol 38:1 (1968).PubMedCrossRefGoogle Scholar
  16. 16.
    J. Roth, M. Bendayan and L. Orci, Ultrastructural localization of intracellular antigens by the use of protein A-gold complex, J Histochem Cytochem 26: 1074 (1978).PubMedCrossRefGoogle Scholar
  17. 17.
    S. Kobayashi, T. Uchida, T. Ohaishi et al., Met-Enkephalin-Arg-Gly—Leu-like immunoreactivity in adrenal chromaffin cells and carotid body chief cells of the dog and monkey, Biomedical Recearch 4: 201 (1983).Google Scholar
  18. 18.
    T. Sato, M. Anno, S. Nakamura et al., Colloidal-gold labeling of electron transport enzymes in mitochondrial myopathy for immuno-electron microscopy, Shinkei Kenkyu No Shinpo 31: 646 (1987).Google Scholar
  19. 20.
    J. V. Priestley, M. A. Hynes, V. K. M. Han et al., In situ hybridization using 32P labelled oligodeoxyribonucleotides for the cellular localisation of mRNA in neuronal and endocrine tissue, Histochem 89: 467 (1988).CrossRefGoogle Scholar
  20. 21.
    T. Sato, S. Nakmura, Y. Ishigaki et al., Defect in cytochrome c oxidase mRNA in chronic progressive external ophthalmoplegia: Detection by in situ hybridization, Ann Neurol 26: 145 (abstruct), (1989).Google Scholar
  21. 22.
    S. Horai and E. Matsunaga, Mitochondrial DNA polymorphism in Japanese, Hum Genet 72: 105 (1986).PubMedCrossRefGoogle Scholar
  22. 23.
    J. Drouin, Cloning of human mitochondrial DNA in Escherichia coli, J Mol Biol 140: 15 (1980).PubMedCrossRefGoogle Scholar
  23. 24.
    R. K. Saiki, S. Scharf, F. Faloona et al., Enzymatic amplification of beta — globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia, Science 230: 1350 (1985).PubMedCrossRefGoogle Scholar
  24. 25.
    M. A. Johnson, D. M. Turnbull, D. J. Dick et al., A partial deficiency of cytochrome c oxidase in chronic progressive external ophthalmoplegia, J Neurol Sciences 60: 31 (1983).CrossRefGoogle Scholar
  25. 26.
    D. L. Song, T. Sato, H. Ujike et al., Ultrastructural immunocytochemical localization of electron-transport enzymes in mitochondrial myopathy, Clin Neurol (Japan) 29: 405 (1989).Google Scholar
  26. 27.
    K. Seki, T. Sato, Y. Ishigaki et al., Decreased activity of cytochrome c oxidase in the macular mottled mouse: an immuno-electron microscopic study, Acta Neuropathol 77: 465 (1989).PubMedCrossRefGoogle Scholar
  27. 28.
    E. A. Schon, R. Rizzuto, C. T. Moraes et al., A direct repeat is a hotspot for large-scale deletion of human mitochondrial DNA, Science 244: 346 (1989).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Takeshi Sato
    • 1
  • Shinji Nakamura
    • 2
  • Hiroko Hirawake
    • 1
  • Etsuko Uchida
    • 1
  • Yasunori Ishigaki
    • 1
  • Koichi Seki
    • 1
  • Ryo Kobayashi
    • 3
  • Satoshi Horai
    • 4
  • Takayuki Ozawa
    • 5
  1. 1.Department of NeurologyJuntendo University School of MedicineTokyoJapan
  2. 2.Department of PathologyJuntendo University School of MedicineTokyoJapan
  3. 3.Department of Forensic MedicineJuntendo University School of MedicineTokyoJapan
  4. 4.National Institute of GeneticsMishimaJapan
  5. 5.Department of Biomedical ChemistryNagoya UniversityNagoyaJapan

Personalised recommendations