Advertisement

Bioenergetics pp 413-427 | Cite as

Mitochondrial DNA Mutations as an Etiology of Human Degenerative Diseases

  • Takayuki Ozawa
  • Masashi Tanaka
  • Wataru Sato
  • Kinji Ohno
  • Satoru Sugiyama
  • Makoto Yoneda
  • Tomoko Yamamoto
  • Kazuki Hattori
  • Shin-ichiro Ikebe
  • Michinari Tashiro
  • Ko Sahashi

Summary

Because mitochondrial DNA (mtDNA) is exclusively maternally transmitted, mutations of mtDNA are implicated to be the cause of maternally inherited diseases. Recent extensive studies have clarified three types of mtDNA mutations in several human diseases.

Type A, homoplasmy: A base transition from guanine at nucleotide number 11,778 to adenine converts the 340th arginine to histidine in the ND4 subünit of Complex I. This maternally inherited mutation was found both in American pedigrees and in Japanese pedigrees of Leber's hereditary optic neuropathy.

Type B, heteroplasmy: Heteroplastic existence of mutant mtDNA with a multi-gene deletion with the normal-sized mtDNA was found in 1/3 of patients with Kearns-Sayre syndrome (KSS) and chronic progressive external ophthalmoplegia (CPEO). The population of the deleted mtDNA was large enough to be detected by the conventional Southern blot analysis. This group of patients showed early onset of clinical symptoms and no family history. The location of the deletion in each individual was precisely determined by the combination of polymerase chain reaction and S1 nuclease digestion (PCR plus S\ method). Direct sequencing of the boundaries of the deletions revealed that the deletions occur between 3~13-bp directly repeated sequences.

Type C, pleioplasmy: Pleioplasmic existence of mutated mtDNAs with various deletions with the normal-size mtDNA was found in 2/3 of patients with mitochondrial myopathy. The population of each mutated mtDNA was so small that the existence could not be detected by the Southern blot analysis but by the PCR amplification. The deletions were confirmed by comparing the shift in the positions of the primers used for amplification with the shift in the sizes of the amplified DNA fragments (primer-shift PCR method). PCR direct sequencing of the one of the deletions in patients with pleioplasmic deletions showed a 13-bp directly repeated sequence which was identical with the sequence found in patients with homoplasmic deletion. The patients with pleioplasmic deletions showed late onset of clinical symptoms. About a half of the patients had a positive family history.

Pleioplasmic mtDNA deletions were also found in patients with exertional myoglobinuria without external ophthalmoplegia and in patients with cardiomyopathy. It is proposed that accumulation of mtDNA mutations and subsequent cytoplasmic segregation of these mutations during life is an important contributor both to the ageing process and to several human degenerative diseases. Since pleioplasmic mtDNA deletions can be analyzed semiquantitatively by using PCR, this type of mutation would be a useful indicator of the levels of accumulation of mtDNA mutations in age-related degenerative disorders.

Keywords

Southern Blot Analysis Mitochondrial Myopathy Chronic Progressive External Ophthalmoplegia Multiple Deletion Chronic Progressive External Ophthalmoplegia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, S., Bankier, A.T., Barrell, B.G., de Bruijn, M.H.L., Coulson, A.R., Drouin, J., Eperon, I.C., Nierlich, D.P., Roe, B.A., Sanger, F., Schreier, P.H., Smith, A.J.H., Staden, R., and Young, I.G. (1981) Nature 290, 457–465.PubMedCrossRefGoogle Scholar
  2. 2.
    Chomyn, A., Mariottini, P., Cleeter, M.W.J., Ragan, C.I., Matsuno-Yagi, A., Hatefi, Y., Doolittle, R.F., and Attardi, G. (1985) Nature 314, 592–597.PubMedCrossRefGoogle Scholar
  3. 3.
    Giles, R.E., Blanc, H., Cann, H.M., and Wallace, D.C. (1980) Proc. Natl Acad. Sci. USA 77, 6715–6719.PubMedCrossRefGoogle Scholar
  4. 4.
    Egger, J., and Wilson, J. (1983) N. Engl. J. Med. 309, 142–146.PubMedCrossRefGoogle Scholar
  5. 5.
    Linnane, A.W., Marzuki, S., Ozawa, T., and Tanaka, M. (1989) Lancet i, 642–645.CrossRefGoogle Scholar
  6. 6.
    Tanaka, M., Miyabayashi, S., Nishikimi, M., Suzuki, H., Shimomura, Y., Ito, K., Narisawa, K., Tada, M., and Ozawa, T. (1988) Pediatr. Res. 24, 447–457.PubMedCrossRefGoogle Scholar
  7. 7.
    Yoneda, M., Tanaka, M., Nishikimi, M., Suzuki, H., Tanaka, K., Nishizawa, M. Atsumi, T., Ohama, E., Horai, S., Ikuta, F., Miyatake, T., and Ozawa, T. (1989) J. Neurol. Sci. 92, 143–158, 1989PubMedCrossRefGoogle Scholar
  8. 8.
    Ozawa, T., Yoneda, M., Tanaka, M., Ohno, K., Sato, W., Suzuki, H., Nishikimi, M., Yamamoto, M., Nonaka, I., and Horai, S. (1988) Biochem. Biophys. Res. Commun. 154, 1240–1247.PubMedCrossRefGoogle Scholar
  9. 9.
    Yoneda, M., Tsuji, S., Yamauchi, T., Inuzuka, T., Miyatake, T. and Ozawa, T. (1989) Lancet i, 1076–1077.CrossRefGoogle Scholar
  10. 10.
    Wallace, D.C., Singh, G., Lott, M.T., Hodge, J.A., Shurr, T.G., Lezza, A.M.S., Elsas II, L.J., and Nikoskelainen, E.K. (1989) Science 242, 1427–1430.CrossRefGoogle Scholar
  11. 11.
    Sato, W., Tanaka, M., Ohno, K., Yamamoto, T., Takada, G. and Ozawa, T. (1989) Biochem. Biophys. Res. Commun. 162, 664–672.PubMedCrossRefGoogle Scholar
  12. 12.
    Holt, I.J., Harding, A.E., Morgan-Hughes, J.A. (1988) Nature 331, 717–719.PubMedCrossRefGoogle Scholar
  13. 13.
    Zeviani, M., Moraes, C.T., DiMauro, S., Nakase, H., Bonilla, E., Schon, E.A., and Rowland, L.P. (1988) Neurology 38, 1339–1346.PubMedGoogle Scholar
  14. 14.
    Moraes, C.T., DiMauro, S., Zeviani, M., et al. (1989) N. Engl. J. Med. 320, 1293–1299.PubMedCrossRefGoogle Scholar
  15. 15.
    Tanaka, M., Sato, W., Ohno, K., Yamamoto, T., and Ozawa, T. (1989) Biochem. Biophys. Res. Commun. 164, 156–163.PubMedCrossRefGoogle Scholar
  16. 16.
    Tanaka-Yamamoto, T., Tanaka, M., Ohno, K., Sato, W., Horai, S., and Ozawa, T. (1989) Biochim. Biophys. Acta 1009, 151–155.PubMedGoogle Scholar
  17. 17.
    Zeviani, M., Servidei, S., Gellera, C., Bertini, E., DiMauro, S., and DiDonato, S. (1989) Nature 339, 309–311.PubMedCrossRefGoogle Scholar
  18. 18.
    Rowland, L.P. (1984) In: Rowland LP ed. Merritt's textbook of neurology. 7th ed. Philadelphia, Lea and Febiger, 585–590.Google Scholar
  19. 19.
    Sato, W., Tanaka, M., Sugiyama, S., Hattori, K., Ito, T., Kawaguchi, H., Onozuka, H., Yasuda, H., Ito, K., Tashiro, K., Ohno, K., Yamamoto, T., Takada, G., and Ozawa, T. (submitted)Google Scholar
  20. 20.
    Tanaka, M., Nishikimi, M., Suzuki, H., Ozawa, T., Nishizawa, M., Tanaka, K., and Miyatake, T. (1986) Biochem. Biophys. Res. Commun. 140, 88–93.PubMedCrossRefGoogle Scholar
  21. 21.
    Müller-Höcker, J. (1989) Am J Pathol 134, 1167–1173.PubMedGoogle Scholar
  22. 22.
    Richter, C., Park, J.-W., and Ames, B.N. (1988) Proc. Natl. Acad. Sci. USA 85, 6465–6467.PubMedCrossRefGoogle Scholar
  23. 23.
    Mizuno, Y., Ohta, S., Tanaka, M., Takamiya, S., Suzuki, K., Sato, T., Oya, H., Ozawa, T., and Kagawa, Y. (1989) Biochem. Biophys. Res. Commun. 163, 1450–1455.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Takayuki Ozawa
    • 1
  • Masashi Tanaka
    • 1
  • Wataru Sato
    • 1
  • Kinji Ohno
    • 1
  • Satoru Sugiyama
    • 1
  • Makoto Yoneda
    • 1
  • Tomoko Yamamoto
    • 1
  • Kazuki Hattori
    • 1
  • Shin-ichiro Ikebe
    • 1
  • Michinari Tashiro
    • 1
  • Ko Sahashi
    • 1
  1. 1.Department of Biomedical Chemistry, Faculty of MedicineUniversity of NagoyaNagoya 466Japan

Personalised recommendations